Chapter 20

428

is necessary because some UNIX implementations deactivate the signal handler #1/usr/bin/eny
when it’s called. By explicitly reactivating it, you ensure that it gets called again # Zombie probl
when the next child process terminates. (It won't happen in this example, but it

will in real servers.)
The call to signal.signal() establishes the signal handler. The first argument

import os, tir

is the signal of interest, and the second one names the function that should be def reap():
called when it arrives. That function must accept two arguments: the signal _TIY L
number and an optional stack frame. while 1:
The remainder of the program is fairly typical. When you run the program, e
you'll see output like this: ;|
excepl
$./zombiesol.py ; b:
print

Before the fork, my PID is 2931
Child sleeping 5 seconds...
Hello from the parent. The child will be PID 2932

Sleeping 10 seconds...

print "Before

Reaped child process 2932 Pid - oscauy
if pid:

Sleep done. print "He
, X i oL print "Pal
You'll notice that the parent reaps the child process only five seconds into its tine, 516l
sleep, since that's how long it takes before the child process terminates. The signal prin‘; 4
handler is called immediately. resll '
You might also notice that the parent process never finishes its sleep. There’s print "4
a special case with time.sleep() in that if any signal handler is called, the sleep time.sleq
will terminate immediately, rather than continue waiting the remaining amount print "Pa

of time. Since you'll rarely need to use time.sleep() with networking code, this &l e
shouldn’t be an issue. print "Ch
time.slee
print "Ch

Solving the Zombie Problem with Polling

This proj
Another approach to solving the zombie problem is to periodically check for function is vé
zombie children. This method doesn't involve a signal handler, and as such, will process woul
not cause problems for sleep(). Signal handlers can also cause problems with ' While therev
I/0 functions on some operating systems, which is a larger problem for network - since new on
clients. When yo

Here's another solution to the zombie problem. Instead of using a signal
handler, it will periodically try to collect any zombie processes.

the signal handler
gets called again
1S example, but it

he first argument
1 that should be
its: the signal

In the program,

onds into its
ates. The signal

s sleep. There's
ed, the sleep
ining amount
Ng code, this

n for network

g a signal

D ——

#1/usr/bin/env python
Zombie problem solution with polling - Chapter 20 - zombiepoll. py

import os, time

def reap():
"""Try to collect zombie processes, if any, """
while 1:
try:
result = 0s.waitpid(-1, 05 . WNOHANG)
except:

break
print "Reaped child process %d" % result[o]

print "Before the fork, my PID is", 0s.getpid()

pid = os.fork()
if pid:
print "Hello from the parent. The child will be PID %g" %
print "Parent sleeping 60 seconds..."
time.sleep(60)
print "Parent sleep done."
reap()
print "Parent sleeping 60 seconds..."
time.sleep(60)

print "Parent sleep done,"
else:

pid

print "Child sleeping 5 seconds..."
time.sleep(s)

print "Child terminating."

This program will simply call reap() to gather up the child processes, This
function is very similar to the signal handler in the previous example. A server
brocess would probably call reap() at the bottom of its primary accept () loop.
While there will sometimes be zombie proce
since new ones would be created only after cleaning up the older ones,

When you run this problem, you'll see output like this:

sses out there, they won't build up,

Forking

429

Chapter 20

430

$./zombiepoll.py

Before the fork, my PID is 3667

Child sleeping 5 seconds...

Hello from the parent. The child will be PID 3668
Parent sleeping 60 seconds...

Child terminating.

Parent sleep done.

Reaped child process 3668

Parent sleeping 60 seconds...

Parent sleep done.

If you run the program, you'll notice several differences between it and the
previous one. First of all, the child process wasn't reaped immediately when it
terminated. Secondly, the call to time.sleep() wasn't interrupted. Finally, if you
do a ps during the 55 seconds between the time the child exits and the time it's
reaped, you'll see it listed as a zombie. But you can see that it's been cleaned up
during the last 60 seconds of the program.

Forking Servers

Forking is most commonly used for network servers. I presented code for several
different servers in Chapter 3, but each sample shared a common problem: It
could only serve one client at a time. This is rarely an acceptable limitation, and
forking is one of the most common ways to solve the problem. The concepts
demonstrated earlier can be applied to the server code. Here'’s an example of an
echo server that uses forking. Because it uses forking, it can echo text back to
several clients at once.

#1/usx/bin/env python
Echo Server with Forking - Chapter 20 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys

def reap():
Collect any child processes that may be outstanding
while 1:
try:
result = os.waitpid(-1, os.WNOHANG)
if not result[0]: break

exce|
|
print

host = ¢
port = 51423
s = socket.s

s.setsockopt
s.bind((host
s.listen(1)

print "Paren

while 1:
try:
clie
except K
rais
except:
trac
cont

Clean
reap()

Fork &
pid = os

if pid:
#Th
ar
clie
cont

else:

R
s.cl

#P1

9

xcept:
break
print "Reaped child process %d" % result[o]

host = "' # Bind to all interfaces
port = 51423

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SULﬁSOCKET, socket.SO_REUSEADDR, 1)
s.bind((host, port))

s.listen(1)

print "Parent at %d listening for connections" % os.getpid()

while 1:
try:
clientsock, clientaddr = s.accept()
except KeyboardInterrupt:
raise
except:
traceback.print_exc()
continue

Clean up old children.
reap()

Fork a process for this connection,
Pid = os.fork()

if pid:
This is the parent process. Close the child's socket |
and return to the top of the loop. i
clientsock.close() 3J
continue it
else:

|
|
From here on, this is the child. |#
s.close() # Close the parent's socket f

Process the connection

Chapter 20

432

try:

print "Child from %s being handled by PID %d" % \
(clientsock.getpeername(), os.getpid())
while 1:
data = clientsock.recv(4096)
if not len(data):
break
clientsock.sendall(data)
except (KeyboardInterrupt, SystemExit):
raise
except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except KeyboardInterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(0)

Let’s look at this program, which is the TCP echo server from Chapter 3 with
forking added in. Now it can handle multiple clients simultaneously.

First, the function reap() is defined similarly to the previous examples. However,
there’s an additional test: to see whether or not the PID returned by waitpid()
is zero. In the previous cases, this test was skipped, since we always knew that
reap() was called when there was at least one zombie process, but that might not
be the case here.

Then, the code proceeds unmodified until after the call to accept(). The first
new call is to reap(). This will clean up any zombie processes that have terminated
since the last time a client connected. Next, the program forks and uses the usual
if pid design.

If the process post-fork is the parent, it will close the child’s socket and return
to the top of the loop with continue to list for more connections. If we're in the child
process, it closes the parent process’s socket and then processes the connection
as usual. However, there’s a change at the end—the child calls sys.exit(0) when
it's done processing. This is vitally important. If it didn’t do this, execution would

return to thet
tions as well
the client clos
client termins

Try runni
that it echoes
status messag

$./echoserve:
Parent at 1627
Child from (‘2
Child from ('

This shov
processes.

Locking

A simple prog
system. Howe
you have to be
connection at
For instar
be a problem|
or corrupted,
To solve
is most freque
process to per
that uses lock

#!/usr/bin/env
Locking serv
NOTE: lastac

import socket,

def getlastacc
"""Given a
from that
never an a

.._.‘ - te

Shapter 3 with

]

ples. However,
ywaitpid()
s knew that
that might not

pt(). The first
ve terminated
1ses the usual

ein the child
 connection
xit(0) when
ution would

return to the top of the while loop, and the child would try to accept new connec-
tions as well as the parent. In this particular case, it will generate an error since
the client closed its copy of the master socket. The sys.exit() makes sure that the
client terminates when it should.

Try running the program. You can then connect to port 51423 and observe
that it echoes text back to you. On the console, the server will print out some
status messages. Here's what it looked like for me:

$./echoserver.py

Parent at 16271 listening for connections

Child from ('127.0.0.1', 37708) being handled by PID 16273
Child from ('127.0.0.1', 37709) being handled by PID 16285

This shows two incoming connections being handled by two different
processes.

Locking

Asimple program like an echo server never needs to write to any files on the local
system. However, this isn't necessarily the case for all servers. When using forking,
you have to be wary of concurrency issues that don’t occur if you only service one
connection at once.

For instance, if part of the task of your server is to write lines to a file, it would
be a problem to have two servers writing to the file at once. Changes could be lost
or corrupted, and the two processes could overwrite each other’s changes.

To solve this problem, you'll need to use locking. In forking programs, locking
is most frequently used to control access to files. Locking lets you force only one
process to perform certain actions at a time. Here’s an example of a forking server
that uses locking:

#!/usx/bin/env python
Locking server with Forking - Chapter 20 - lockingserver.py
NOTE: lastaccess.txt will be overwritten!

import socket, traceback, os, sys, fcntl, time

def getlastaccess(fd, ip):
"""Given a file descriptor and an IP, finds the date of last access
from that IP in the file and returns it. Returns None if there was
never an access from that IP."""

433

|

Forking

Chapter 20

Acquire a shared lock. We don't care if others are reading the file
right now, but they shouldn't be writing it.
fentl.flock(fd, fcntl.LOCK_SH)

try:
Start at the beginning of the file
fd.seek(0)

for line in fd.readlines():
fileip, accesstime = line.strip().split("|")
if fileip == ip:
Got a match -- return it
return accesstime
return None
finally:
Make sure the lock is released no matter what
fentl.flock(fd, fentl.LOCK_UN)

def writelastaccess(fd, ip):
"""Update file noting new last access time for the given IP."""

Acquire an exclusive lock. Nobody else can modify the file
while it's being used here.

fentl.flock(fd, fentl.LOCK EX)

records = []

try:
Read the existing records, *except* the one for this IP.
fd.seek(0)
for line in fd.readlines():
fileip, accesstime = line.strip().split("|")
if fileip != ip:
records.append((fileip, accesstime))

fd.seek(0)

Write them back out, *plus* the one for this IP.
for fileip, accesstime in records + [(ip, time.asctime())]:
fd.write("%s|%s\n" % (fileip, accesstime))
fd.truncate()
finally:
Release the lock no matter what
fentl.flock(fd, fentl.LOCK _UN)

434

def reap():

"""Collect a
while 1:
try:

Tesl

if n

except:
breal
print "R

host = '
port = 51423

s = socket.socket
s.setsockopt (soc
s.bind((host, po:
s.listen(1)

fd = open("lastac

while 1:

try:
clientsoc

except Keyboa
raise

except:
traceback
continue

Clean up ol
reap()

Fork a proc
pid = os.fork

if pid:
This is
and ret
clientsoc
continue
else:
From he
s.close()

.

_____—————————————::]IIllllIlllll..ll..lllll.llllllllligup‘

Forking

def reap():
"""Collect any waiting child processes,"""
while 1:
try:
Tesult = os.waitpid(-1, 0s . WNOHANG) .
if not result[o]: break
except:
break
print "Reaped child process %d" % result[o]

host = *' # Bind to all interfaces
port = 51423

5 = socket.sccket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((host, port))

s.listen(1)

fd = open("lastaccess.txt", "w+")

while 1:
try:
clientsock, clientaddr - s.accept()
except KeyboardInterrupt:
raise
except:
traceback.print_exc()
continue

Clean up old children.
reap()

Fork a process for this connection,
pid = os.fork()

if pid:
This is the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue
else:
From here on, this is the child.
s.close() # Close the parent's socket

Chapter 20

Process the connection To com
getlastacce
try: This reques
print "Cot connection from %s, servicing with PID %d" ¥ \ shared lock
(clientsock.getpeername(), os.getpid()) function, B
ip = clientsock.getpeername()[0] same time,
clientsock.sendall("Welcome, %s.\n" % ip) If anott
= getlast d;. 3 ,
]i,:s:asfe lastaccess(fd, ip) processwil
= p i is a blockin,
clientsock.sendall("I last saw you at %s.\n" % last)
—— At the e
clientsock.sendall("I've never seen you before.\n") argument.c
held. It's vit
writelastaccess(fd, ip) mdeadlo.l:k
clientsock.sendall("I have noted your connection at %s.\n" % \ automati
getlastaccess(fd, ip))
except (KeyboardInterrupt, SystemExit): 3
raise Twl;emré
except: run.Ac
traceback.print_exc() use try
to be sk
Close the connection
try:
clientsock.close() The wr
except KeyboardInterrupt: except that
raise exclusivelo
except: the file. Tha
traceback.print_exc() well as othi
After tt
Done handling the connection. Child process *must* terminate writes it bl
and not go back to the top of the loop. first acquir
RYRNERIE The answel
then betwe
This is a fairly basic server. It simply notes the last time a connection was acquitstil
received from a given IP and notes that in a file. The algorithm used to do that is Yo ab(;u'
rather inefficient and vulnerable to race conditions—situations in which the wouldbell
outcome depends on which process happens to get to the data first. Letsl8
. /Lockingse
example of
436

1 was
that is

To combat that, it uses fcntl.flock() to restrict access to the file. The
getlastaccess() function starts out by calling fcntl.flock(fd, fcntl.LOCK_SH).
This requests a shared lock on the file. Any number of processes can hold a
shared lock as long as no process holds an exclusive lock. That’s fine for this
function, because it's only reading. It's OK if other processes are reading at the
same time, but you don't want to be reading while someone else is writing.

If another process tries to acquire a lock while this process holds it, the other
process will stall at the flock() call until the lock can be acquired. Therefore, this
is a blocking call because execution is blocked until a lock is acquired.

At the end of getlastaccess(), flock() is called again, this time with an
argument of LOCK_UN, which means “unlock” and effectively releases the lock
held. It’s vital that all acquired locks must be released. Failure to do so can result
in deadlock, where processes are waiting on each other. The only time a lock is
automatically released for you is when your process terminates.

TIP Notice that the unlocking occurs in a finally clause. This means that
whether an exception was caught or not, the unlocking command is always
run. A common error is to fail to use try. . .finally around locks. Unless you
use try...finally, an unexpected exception can cause the unlock command
to be skipped, resulting in deadlock.

The writelastaccess() function uses a pattern similar to getlastaccess(),
except that it acquires an exclusive lock with LOCK_EX. When a process holds an
exclusive lock, it guarantees that no other process can have a lock of any type on
the file. That's what you want here, since you want to lock out all the other readers as
well as other instances of writelastaccess().

After the lock is acquired, writelastaccess() loads the file from disk, then
writes it back out with the new information. You may be wondering why I didn’t
first acquire a shared lock for reading, followed by an exclusive lock for writing.
The answer is that this would introduce a race condition. If I used that approach,
then between the time the lock for reading is released and the lock for writing is
acquired, another process could have written out data. My process would not
know about this data (having just read the file premodification), and the change
would be lost. That’s why it's important to use a single lock for this entire function.

Let’s look at what this program does when it’s run. You can just use
./lockingserver.py to start it. Then, you can telnet to the server. Here'’s an
example of a client-side session:

Forking

437

Chapter 20

$ telnet localhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

Welcome, 127.0.0.1.

I've never seen you before.

I have noted your connection at Thu Jul 1 06:06:42 2004.
Connection closed by foreign host.

$ telnet localhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

Welcome, 127.0.0.1.

I last saw you at Thu Jul 1 06:06:42 2004.

I have noted your connection at Thu Jul 1 06:08:44 2004.
Connection closed by foreign host.

Here, the first time the client connected, the server didn’t have a record of it
inits lastaccess. txt file. It recorded the connection time. For the second connection,
the server reports the saved connection time and records the new connection time.

While these connections were occurring, the server was reporting this:

$./lockingserver.py

Got connection from ('127.0.0.1', 37742), servicing with PID 16848
Reaped child process 16848

Got connection from ('127.0.0.1', 37743), servicing with PID 16850

In this particular case, the second child process wasn't yet reaped even though
it had terminated. When a third child would connect, it would be reaped.

Error Handling

Strange as it may seem, os. fork() can fail. This is rare but does happen. The cause
of a failure would be a resource limitation of some kind—the operating system
may be out of memory, it may be out of space in its process table, or you may run
up against a limit on the maximum number of processes set by an administrator.

There’s no good way to deal with this situation. If you don’t check for an error,
a failure on os.fork() will terminate the program. For a client, that’s OK, but fora
server, it means your server completely dies.

A better way is to kill off just the one connection that caused the problem,
and hope that the administrator notices the problem or that the thing causing
the problem (a wayward program, for instance) goes away. If so, then when later

clients connect,
not be restarted.
Remember
be more specific,
there’s an error, |
that'’s why you're
Here's a mof
with os.fork ():

#1/usz/bin/env p!
Echo Server wi
errorserver.py

import socket, t

def reap():
while 1:
try:
resu
if n
except:
brea
print "R

host = "'
51423

port

= socket.socke

. setsockopt(soc
.bind((host, po
.listen(1)

n owm o own

while 1:

try:
clientso

except Keybo
raise

except:
tracebac
continue

Clean up ¢
reap()

e arecord of it
nd connection,
|
ting this:

 ever though
2ap ed.

n. The cause
ing system
/0u may run
ministrator.
foran error,
K, but for a

problem,
g causing
| when later

_‘

Forking

clients connect, the fork should succeed. This way, the server process itself need
not be restarted.

Remember at the beginning of the chapter I said that fork() returns twice. To
be more specific, fork() either returns twice or raises an exception due to an error. If
there's an error, there’s no PID returned and execution doesn't fork off—after all,
that's why you're getting the exception.

Here’s a modified version of the forking echo server that handles problems
with os. fork ():

#!/usx/bin/env python
Echo Server with Forking and Forking Error Detection - Chapter 20
errorserver.py

import socket, traceback, os, sys

def reap():
while 1:
try:
result = os.waitpid(-1, os.WNOHANG)
if not result[o]: break
except:
break
print "Reaped child process %d" % result[0] |
host = "' # Bind to all interfaces !
port = 51423

1}

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR, 1)
s.bind((host, port))

s.listen(1)

while 1:
try:
clientsock, clientaddr = s.accept()
except KeyboardInterrupt:
raise
except:
traceback.print_exc()
continue

Clean up old children.
reap()

439

Chapter 20

440

Fork a process for this connection.
try:
pid = os.fork()
except:
print "BAD THING HAPPENED: fork failed"
clientsock.close()
continue

if pid:
This is the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue
else:
print "New child", os.getpid()
From here on, this is the child.
s.close() # Close the parent's socket

Process the connection

try:
print "Got connection from", clientsock.getpeername()
while 1:
data = clientsock.recv(4096)
if not len(data):
break
clientsock.sendall(data)
except (KeyboardInterrupt, SystemExit):
raise
except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except KeyboardInterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(0)

You'll notice
fork() fails, the
returns to the to
never be used, a
over it, More imy
time in which fo
have to turn awe
each discardedr
case, Python’s ga
bad, but it's bad

This prograr
soever to the clie
if the server canr
the alternative. Ii
master process. I
say, three minute
at all. A few clien
could cause the

Unfortunate
that’s easily done
restrictions on pi
system problem.

Summary

Most server progi
are several meth
this. The easiestis

To fork, you ¢
process ID of the

When a proci
the system until i
using forking mu
minates. One waj
polling, and peric

Forking serve
incoming connec
file descriptors th

Forking

1 You'll notice that this program is mostly the same as the previous example. If
fork() fails, the server displays an error message, closes the client socket, and
returns to the top of the loop. It’s important to close that client socket—it will
never be used, and this ensures that the client knows not to try communicating

over it. More importantly, imagine a scenario in which there was a prolonged
time in which fork() fails—perhaps the system has run out of memory. It might
i have to turn away thousands of client requests. If it doesn’t close those sockets,
i each discarded request will continue consuming resources. (In this particular

l case, Python's garbage collector will likely keep that problem from getting very
bad, but it’s bad practice to rely upon that behavior).

This program is also notable for what it doesn’t do. It sends no message what-
soever to the client. The client will simply see a connection reset by peer message
if the server cannot fork. This isn't particularly friendly to the client, but consider
the alternative. If the server cannot fork, everything it does is taking place in the
master process. If it takes a while to communicate with a poorly connected client—
say, three minutes—then during that time the server isn't accepting connections
at all. A few clients that are attempting to connect when the server can't fork
could cause the server to be rendered effectively no better than if it had crashed.

Unfortunately, testing your os.fork() error-handling code isn't something

that'’s easily done. Causing os. fork() to fail means enforcing administrative
t restrictions on process counts (not always easily done), or actually causing a
system problem.

Summary

Most server programs have a need to handle more than one client at once. There
are several methods available to the server designer who wants to accomplish
this. The easiest is forking, which is available primarily on Linux and UNIX platforms.

To fork, you call os. fork(), which returns twice. That function returns the
process ID of the child to the parent, and returns 0 to the child.

When a process terminates, information about its termination remains on
the system until its parent calls wait() orwaitpid() on it. Therefore, programs
using forking must make sure to callwait() orwaitpid() when a child process ter-
minates. One way to do that is via a signal handler. Alternatively, you could use
polling, and periodically check for terminated child processes.

Forking servers usually will use fork() to create a new process to handle each
incoming connection. It's important for both the parent and child to close any
file descriptors that won't be used in that particular process.

441

Chapter 20

If files will be modified, locking is important. Locking prevents data corruption
that could occur if multiple processes attempt to modify a file at once, or if one
process reads a file while another is writing to it.

The os.fork() function can raise an exception if the system cannot perform
a fork. Though rare, this exception must be handled to prevent a server crash.

442

FORKING, WHI
requests to be
separate proc
threading. Th
single process
ever need an
explained by
applications |
In some ¢
other connec
nication betw
receives uploa
server may ne
are updating’
that use fork(
With threads,
just running 1
one thread, al
global variabl
the program. |
so changing a
However,
between thre
always good.
mess up the t
that threads ¢
and debug,
Throught
munication p
doesn't turn ¢
threadinginl
issues. Next, |
concludes wi

