
Chapter 20

428

..

is necessary because some UNIX implementations deactivate the signal handler
when it's called. By explicitly reactivating it, you ensure that it gets called again
when the next child process terminates. (It won't happen in this example, but it
will in real servers.)

The call to signal. signal () establishes the signal handler. The first argument
is the signal of interest, and the second one names the function that should be
called when it arrives. That function must accept two arguments: the signal
number and an optional stack frame.

The remainder of the program is fairly typical. When you run the program,
you'll see output like this:

$./zombiesol.py

Before the fork, myPID is 2931

Child sleeping 5 seconds...

Hello from the parent. The child will be PID 2932

Sleeping 10 seconds...
Reaped child process 2932

Sleep done.

You'll notice that the parent reaps the child process only five seconds into its
sleep, since that's how long it takes before the child process terminates. The signal
handler is called immediately.

You might also notice that the parent process never finishes its sleep. There's
a special case with time. sleepO in that if any signal handler is called, the sleep
will terminate immediately, rather than continue waiting the remaining amount
of time. Since you'll rarely need to use time. sleepO with networking code, this
shouldn't be an issue.

Solving the Zombie Problem with Polling

Another approach to solving the zombie problem is to periodically check for
zombie children. This method doesn't involve a signal handler, and as such, will
not cause problems for sleepO. Signal handlers can also cause problems with
I/O functions on some operating systems, which is a larger problem for network
clients.

Here's another solution to the zombie problem. Instead of using a signal
handler, it will periodically try to collect any zombie processes.

#! /usr/bin/enj
ZombieprobJ

I

import as, tij
I

def reapO: I
"" "Try to,
while 1:

jtry:

exce;1
b~

prin~

print "Befor~

pid = as. fork

jif pid:

print "H

1

print" P
time.slee

print "Pa

reapO I
print" P
time.sle

print" P
else:

process WOl
While there

since new 0

! the signal handler

t gets called again
1is example, but it

Thefirst argument
IIIthat should be

ots:the signal

runthe program,

!seconds into its

nates. The signal

its sleep. There's

illed, the sleep
1aining amount
dng code, this

Iycheck for

Id as such, will
oblems with
~mfor network

ng a signal

...

#!/usr/bin/env python

Zombieproblemsolution with polling - Chapter 20 - zombiepoll.py

import os, time

def reapO:

"""Try to collect zombie processes, if any. """while 1:

try:

result = os.waitpid(-l, os.WNOHANG)
except:

break

print "Reaped child process %d" % result[o]

print" Before the fork, my PID is", os. getpid 0

pid = os. forkO
if pid:

print "Hello from the parent. The child will be PID %d" % pid
print "Parent sleeping 60 seconds..."
time.sleep(60)

print "Parent sleep done."
reapO

print "Parent sleeping 60 seconds..."
time.sleep(60)

print "Parent sleep done."
else:

print "Child sleeping 5 seconds..."
time.sleep(s)

print "Child terminating."

This program will simply call reap () to gather up the child processes. This
function is very similar to the signal handler in the previous example. A server

process would probably call reap () at the bottom of its primary accept () loop.
While there will sometimes be zombie processes out there, they won't build up,
since new ones would be created only after cleaning up the older ones.

When you run this problem, you'll see output like this:

.
- -

~

Forking

429

-

..

Chapter20

430

$./zombiepoll.py

Before the fork, my PID is 3667

Child sleeping 5 seconds...

Hello from the parent. The child will be PID 3668

Parent sleeping 60 seconds...

Child terminating.

Parent sleep done.

Reaped child process 3668

Parent sleeping 60 seconds...

Parent sleep done.

If you run the program, you'll notice several differences between it and the
previous one. First of all, the child process wasn't reaped immediately when it
terminated. Secondly, the call to time.sleepO wasn't interrupted. Finally, ifyou
do a ps during the 55 seconds between the time the child exits and the time it's
reaped, you'll see it listed as a zombie. But you can see that it's been cleaned up
during the last 60 seconds of the program.

Forking Servers

Forking is most commonly used for network servers. I presented code for several
different servers in Chapter 3, but each sample shared a common problem: It
could only serve one client at a time. This is rarely an acceptable limitation, and
forking is one of the most common ways to solve the problem. The concepts
demonstrated earlier can be applied to the server code. Here's an example of an
echo server that uses forking. Because it uses forking, it can echo text back to
several clients at once.

#!/usr/bin/env python

EchoServer with Forking - Chapter 20 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys

def reapO:

Collect any child processes that may be outstanding
while 1:

try:

result = os.waitpid(-l, os.WNOHANG)
if not result[o]: break

~-~-- -

excel
I

prinJ

host = 0 0 I

port = 51423]

s = socket.S!

s. setsockop~
s . bind ((hos11

s .listen(l)

print" Parert

while 1:

try:

cli~

except ~
rai~

except: I
tra~

.con~

Clean
IreapO
I

.Fork ~

pld = 0

if pid:
T:

a,

cIi<

con

else:

F
s.C

P

except:
break

print "Reaped child process %d" % result[o]

Forking

host = "

port = 51423 # Bind to all interfaces

; between it and the

mediately when it

lpted. Finally; if you
its and the time it's

it'sbeen cleaned up

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((host, port»

s.listen(l)

print "Parent at %dlistening for connections" % os.getpidO

while 1:

try:

clientsock, clientaddr = s.accept()
except Keyboardlnterrupt:

raise

ltedcodefor several
mon problem: It
iblelimitation, and

11.The concepts

s an example of an
cho text back to

except:

traceback.print_exc()
continue

Clean up old children.
reapO

Fork a process for this connection.
pid = os. forkO

if pid:

This is the parent process. Close the child's
and return to the top of the loop.
clientsock.close()
continue

else:

socket

From here on, this is the child.

s.close() # Close the parent's socket

Process the connection

431

.

.

.

Chapter20

432

try: return to the t
tions as well,
the client clos
client termin;

Try runni
that it echoes

status messa~

print "Child from %s being handled by PID %d" % \
(clientsock.getpeername(), os.getpid(»

while 1:

data = clientsock.recv(4096)

if not len(data):

break

clientsock.sendall(data)

except (KeyboardInterrupt, SystemExit):

raise

$./echoserveJ

Parent at 162i

Child from (' 1

Child from (' 1except:

traceback.print_exc()

Close the connection

This sho~

processes.

try:

clientsock.close()

except KeyboardInterrupt:

raise

Locking

A simple prog
system. Howe
you have to bt
connection at

For instar

be aproblemI

or corrupted,
To solvetJ

is most freqm
process to per
that uses lock

except:
traceback.print_exc()

Done handlingthe connection. Child process*must*terminate

and not go back to the top of the loop.

sys.exit(o)

Let's look at this program, which is the TCP echo server from Chapter 3with
forking added in. Now it can handle multiple clients simultaneously.

First, the function reap() is defined similarly to the previous examples.However,
there's an additional test: to see whether or not the PID returned by waitpid ()
is zero. In the previous cases, this test was skipped, since we always knew that
reap() was called when there was at least one zombie process, but that might not
be the case here.

Then, the code proceeds unmodified until after the call to accept (). The first
new callis to reapO. This will clean up any zombie processes that have terminated
since the last time a client connected. Next, the program forks and uses the usual
if pid design.

If the process post-fork is the parent, it will close the child's socket and return
to the top of the loop with continue to list for more connections. Ifwe're in the child
process, it closes the parent process's socket and then processes the connection
as usual. However, there's a change at the end-the child calls 5ys .exit (0) when
it's done processing. This is vitally important. If it didn't do this, execution would

#! lusr Ibin/env

Locking serv
NOTE:lastac

import socket,

def getlastacc

"""Given a
from that

never an a

:erminate

Chapter 3 with
usly.
nples.However,
bywaitpidO

ays knew that

'tthat might not

ept O.The first
avetenninated
uses the usual

ket and return
e're in the child
Ieconnection

exit(o) when
!cution would

return to the top of the while loop, and the child would try to accept new connec-
tions as well as the parent. In this particular case, it will generate an error since
the client closed its copy of the master socket. The sys. exit 0 makes sure that the
client terminates when it should.

Try running the program. You can then connect to port 51423 and observe
that it echoes text back to you. On the console, the server will print out some
status messages. Here's what it looked like for me:

$.Iechoserver.py

Parent at 16271 listening for connections

Child from ('127.0.0.1', 37708) being handled by PID 16273

Child from ('127.0.0.1', 37709) being handled by PID 16285

This shows two incoming connections being handled by two different
processes.

locking

Asimple program like an echo server never needs to write to any files on the local
system. However, this isn't necessarily the case for all servers. When using forking,
you have to be wary of concurrency issues that don't occur ifyou only service one
connection at once.

For instance, if part of the task of your server is to write lines to a file, it would
be a problem to have two servers writing to the file at once. Changes could be lost
or corrupted, and the two processes could overwrite each other's changes.

To solve this problem, you'll need to use locking. In forking programs, locking
is most frequently used to control access to files. Locking lets you force only one
process to perform certain actions at a time. Here's an example of a forking server
that uses locking:

#!/usr/bin/env python

Locking server with Forking - Chapter 20 - lockingserver.py
NOTE:lastaccess.txt will be overwritten!

import socket, traceback, os, sys, fcntl, time

def getlastaccess(fd, ip):

"""Given a file descriptor and an IP, finds the date of last access
from that IP in the file and returns it. Returns None if there was

never an access from that IP."""

Forking

433

..

Chapter20

434

Acquire a shared lock. Wedon't care if others are reading the file

right now, but they shouldn't be writing it.

fcntl.flock(fd, fcntl.LOCK_SH)

try:

Start at the beginning of the file
fd.seek(o)

for line in fd.readlines():

fileip, accesstime = line.strip().split("I")

if fHeip == ip:
Got a match -- return it

return accesstime

return None

finally:
Make sure the lock is released no matter what

fcntl.flock(fd, fcntl.LOCK_UN)

def writelastaccess(fd, ip):

"""Update fHe noting new last access time for the given IP."""

Acquire an exclusive lock. Nobodyelse can modify the file

while it's being used here.

fcntl.flock(fd, fcntl.LOCK_EX)
records = [J

try:

Read the existing records, *except* the one for this IP.
fd.seek(o)

for line in fd.readlines():

fileip, accesstime = line.strip().split("I")

if fHeip != ip:

records.append«fileip, accesstime))

fd.seek(o)

Write them back out, *plus* the one for this IP.

for fileip, accesstime in records + [(ip, time.asctime())J:

fd.write("%sl%s\n" % (fHeip, accesstime))
fd. truncate()

finally:
Release the lock no matter what

fcntl.flock(fd, fcntl.LOCK_UN)

def reapO:
""" Collect a

while 1:

try:
resu

if n,

except:
breal

print "RI

host = "

port = 51423

s = socket.sockej

s. setsockopt (sod

s. bind«host, PO]

s .1isten(l)

fd = open("lastac

while 1:

try:
c1ientsoc

except Keyboi
raise

except:
traceback

continue

Clean up 01

reapO

Fork a proc

pid = os. fork

if pid:
This is

and ret

c1ientsoc

continue
else:

Fromhe.

s. c1ose()

-

,

ingthe file
def reapO:

"""Collect any waiting child processes."""

Forking

while 1:

try:

result = os.waitpid(-l, os.WNOHANG)
if not result[O]: break

except:
break

print "Reaped child process %d" % result[o]

host =

port = 51423
Bind to all interfaces

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,1)
s.bind«host, port»
s.listen(l)

fd = open("lastaccess.txt", "w+")

while 1:

try:

clientsock, clientaddr = s.accept()
except Keyboardlnterrupt:

raise

except:

traceback.print_exc()
continue

Clean up old children.
reapO

Fork a process for this connection.
pid = os. forkO

if pid:

This is the parent process. Close the child's

and return to the top of the loop.
clientsock.close()
continue

else:

From here on, this is the child.

s.close() # Close the parent's socket

socket

435

"

III --.

..

Chapter 20

436

Process the connection

try:

print nGot connection from %5, servicing with PID %dn% \

(clientsock.getpeername(), os.getpid(»

ip = clientsock.getpeername()[o]

clientsock.sendall(nWelcome, %s.\nn % ip)

last = getlastaccess(fd, ip)
if last:

clientsock.sendall(nI last saw you at %s.\nn % last)
else:

clientsock.sendall(nI've never seen you before.\nn)

writelastaccess(fd, ip)

clientsock.sendall(nI have noted your connection at %5.\nn % \

getlastaccess(fd, ip»

except (Keyboardlnterrupt, SystemExit):
raise

except:

traceback.print_exc()

Close the connection

try:

clientsock.close()

except Keyboardlnterrupt:
raise

except:

traceback.print_exc()

Done handling the connection. Child process *must* terminate

and not go back to the top of the loop.

sys.exit(o)

This is a fairly basic server. It simply notes the last time a connection was
received from a given IP and notes that in a file. The algorithm used to do that is
rather inefficient and vulnerable to race conditions-situations in which the

outcome depends on which process happens to get to the data first.

To com

getlastacce

This reques
shared lock

function, hi

same time,

If anotl

process wi!
is a blockin.

At the,

argument (
held. It's vii

in deadlock
automatica

The wr:

except that
exclusive Ie

the file.Tha

well as Othl

After tl

writes it ba

first acquirl
The answel

then betwe

acquired, a
knowabou

would be Ie

Let's10

./lockingsE

exampleof

% \

To combat that, it uses fcntl. flockO to restrict access to the file. The
getlastaccess0 function starts out by callingfcntl. flock(fd, fcntl. LOCK-SH).
This requests a shared lock on the file. Any number of processes can hold a
shared lock as long as no process holds an exclusive lock. That's fine for this
function, because it's only reading. It's OK if other processes are reading at the
same time, but you don't want to be reading while someone else is writing.

If another process tries to acquire a lock while this process holds it, the other
process will stall at the flockO call until the lock can be acquired. Therefore, this
is a blocking call because execution is blocked until a lock is acquired.

At the end of getlastaccessO, flockO is called again, this time with an
argument of LOCK_UN,which means "unlock" and effectively releases the lock
held. It's vital that all acquired locks must be released. Failure to do so can result
in deadlock, where processes are waiting on each other. The only time a lock is
automatically released for you is when your process terminates.

TIP Notice that the unlocking occurs in a finally clause. This means that
whether an exception was caught or not, the urilockingcomtnand isaIways
run. Acommon error is to fail to use try. . .finally around locks. Unlessyou
use try. . .finally, an unexpected exception can cause the unlock comtnand
to be skipped, resulting in deadlock.

nwas
0 that is

hthe

The writelastaccess () function uses a pattern similar to getlastaccess (),
except that it acquires an exclusive lock with LOCK_EX. When a process holds an
exclusive lock, it guarantees that no other process can have a lock of any type on
the file.That's what you want here, since you want to lock out all the other readers as
well as other instances ofwritelastaccessO.

After the lock is acquired, writelastaccess () loads the file from disk, then
writes it back out with the new information. You may be wondering why I didn't
first acquire a shared lock for reading, followed by an exclusive lock for writing.
The answer is that this would introduce a race condition. If I used that approach,
then between the time the lock for reading is released and the lock for writing is
acquired, another process could have written out data. My process would not
know about this data (having just read the file premodification), and the change
would be lost. That's why it's important to use a single lock for this entire function.

Let's look at what this program does when it's run. You can just use
./lockingserver .pyto start it. Then, you can telnet to the server. Here's an
example of a client-side session:

Forking

437

.

,

,

-

Chapter 20

438

$ telnetlocalhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

Welcome, 127.0.0.1.

I've never seen you before.

I have noted your connection at Thu Jul 1 06:06:42 2004.

Connection closed by foreign host.

$ telnet localhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

Welcome, 127.0.0.1.

I last saw you at Thu Jul 1 06:06:42 2004.

I have noted your connection at Thu Jul 1 06:08:44 2004.

Connection closed by foreign host.

clients connect,
not be restarted.

Remember ~

be more specific,
there's an error,1

that's whyyou'n
Here's a mOl

with os. fork 0:

#!/usr/bin/env p
EchoServerwi

errorserver. py

import socket, t

def reapO:
while 1:

try:Here, the first time the client connected, the server didn't have a record of it
in its lastaccess. txt file.It recorded the connection time. Por the second connection,

the server reports the saved connection time and records the new connection time.
While these connections were occurring, the server was reporting this:

resu

ifn

except:

brea

$./lockingserver.py

Got connection from ('127.0.0.1',

Reaped child process 16848

Got connection from ('127.0.0.1',

print "R

37742), servicing with PID 16848

37743), servicing with PID 16850

host = ..

port = 51423

In this particular case, the second child process wasn't yet reaped even though
it had terminated. When a third child would connect, it would be reaped.

s = socket. socke

s. setsockopt(soc

s. bind((host, po

s .listen(l)

Error Handling
while 1:

try:

clientsc

except Keybc

Strange as it may seem, os. fork () can fail. This is rare but does happen. The cause
of a failure would be a resource limitation of some kind-the operating system

may be out of memory, it may be out of space in its process table, or you may run
up against a limit on the maximum number of processes set by an administrator.

There's no good way to deal with this situation. Ifyou don't check for an error,
a failureon os.fork() willterminate the program. Pora client, that's OK,but fora
server, it means your server completely dies.

A better way is to kill off just the one connection that caused the problem,
and hope that the administrator notices the problem or that the thing causing
the problem (a wayward program, for instance) goes away. If so, then when later

raise

except:
tracebac
continuE

Clean up c

reapO

-

:vea record of it
:ondconnection,

;onnection time.

rting this:

8

d even though

,reaped.

en. The cause

ting system

you may rUll
dministrator.

cfor an error,

OK,but for a

e problem,
gcausing

Inwhen later

clients connect, the fork should succeed. This way, the server process itself need
not be restarted.

Remember at the beginning of the chapter I said that fork () returns twice. To
be more specific, fork () either returns twice or raises an exception due to an error. If
there's an error, there's no PID returned and execution doesn't fork off-after all,

that's why you're getting the exception.
Here's a modified version of the forking echo server that handles problems

with os. fork 0:

#!/usr/bin/env python

EchoServer with Forking and Forking Error Detection - Chapter 20
errorserver.py

import socket, traceback, os, sys

def reapO:
while 1:

try:

result = os.waitpid(-l, os.WNOHANG)
if not result[o]: break

except:
break

print "Reaped child process %d" % result[o]

host = "

port = 51423

Bind to all interfaces

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind«host, port»

s.listen(l)

while 1:

try:

clientsock, clientaddr = s.accept()

except Keyboardlnterrupt:
raise

except:

traceback.print_exc()
continue

Clean up old children.

reapO

..

.-

Forking

439

..

Chapter 20

440

Fork a process for this connection.

try:

pid = os. fork 0
except:

print "BADTHINGHAPPENED:fork failed"

clientsock.close()
continue

if pid:

This is the parent process. Close the child's

and return to the top of the loop.
clientsock.close()
continue

else:

print "Newchild", os.getpidO
From here on, this is the child.

s. closeO

socket

Close the parent's socket

Process the connection

try:

print "Got connection from", clientsock.getpeernameO
while 1:

data = clientsock.recv(4096)

if not len(data):
break

clientsock.sendall(data)

except (Keyboardlnterrupt, SystemExit):
raise

except:

traceback.print_exc()

Close the connection

try:

clientsock.close()

except KeyboardInterrupt:
raise

except:

traceback.print_exc()

Done handling the connection. Child process *must* terminate

and not go back to the top of the loop.

sys.exit(o)

You'll noticE

forkO fails, the ~
returns to the to

never be used, a

over it. More im]
time in which fo

have to turn aW2

each discarded r

case, Python's ga
bad, but it's bad

This prograr
soever to the die

if the server cam

the alternative. Ii

master process. I:

say, three minut{
at all. A few clien

could cause the !

Unfortunate

that's easily dOnE

restrictions on pI

system problem.

Summary

Most server progl
are several meth(

this. The easiestis

To fork, you (

process ID of the

When a proo

the system until i

using forking mu:

minates. One wa~

polling, and peri<

Forking servE

incoming connec

file descriptors th

-

-
You'llnotice that this program is mostly the same as the previous example. If

forkO fails, the server displays an error message, closes the client socket, and
returns to the top of the loop. It's important to close that client socket-it will
never be used, and this ensures that the client knows not to try communicating
overit. More importantly, imagine a scenario in which there was a prolonged
time in which fork() fails-perhaps the system has run out of memory. It might
have to turn away thousands of client requests. If it doesn't close those sockets,
each discarded request will continue consuming resources. (In this particular
case, Python's garbage collector will likely keep that problem from getting very
bad, but it's bad practice to rely upon that behavior).

This program is also notable for what it doesn't do. It sends no message what-
soeverto the client. The client will simply see a connection reset by peer message
ifthe server cannot fork. This isn't particularly friendly to the client, but consider
the alternative. If the server cannot fork, everything it does is taking place in the
master process. If it takes a while to communicate with a poorly connected client-
say,three minutes-then during that time the server isn't accepting connections
at all.A few clients that are attempting to connect when the server can't fork
could cause the server to be rendered effectively no better than if it had crashed.

Unfortunately, testing your os. fork() error-handling code isn't something
that's easily done. Causing os. fork () to fail means enforcing administrative
restrictions on process counts (not always easily done), or actually causing a
system problem.

Summary

Mostserver programs have a need to handle more than one client at once. There
are several methods available to the server designer who wants to accomplish
this.The easiest is forking,which is available primarily on Unux and UNIXplatforms.

To fork, you call os. fork (), which returns twice. That function returns the
process ID of the child to the parent, and returns 0 to the child.

When a process terminates, information about its termination remains on
the system until its parent calls wait() or waitpid() on it. Therefore, programs
using forking must make sure to call wait () or waitpid () when a child process ter-
minates. One way to do that is via a signal handler. Alternatively, you could use
polling, and periodically check for terminated child processes.

Forking servers usually will use fork () to create a new process to handle each
incoming connection. It's important for both the parent and child to close any
filedescriptors that won't be used in that particular process.

.-

Forking

I

,

,

\

441

.

Chapter20

442

If fileswill be modified, locking is important. Locking prevents data corruption
that could occur if multiple processes attempt to modify a file at once, or ifone

process reads a file while another is writing to it.
The os. fork () function can raise an exception if the system cannot perform

a fork. Though rare, this exception must be handled to prevent a server crash.

FORKING, WHII

requests to be

separate proc

threading. Th

single process
ever need an

explained by

applications 1
In some (

other connec

nication betv.

receives uplm

server may fit

are updating'
that use fork (

With threads,

just running]
one thread, aJ

global variab]

the program. 1

so changing a
However

between thre

always good.

mess up the t
that threads c

and debug.

Through!

munication p
doesn't turn (

threading in I

issues. Next,]
concludes wi'

-~~--

-

