CHAPTER 20

Forking

VIRTUALLY ALL AUTHORS of servers, and many authors of clients, need to write pro-
grams that can effectively handle multiple network connections simultaneously.
As an example, consider a web server. If your server could only handle one con-
nection at a time, you could only be transmitting a single page at a time. If you
have a large file on your server and a user on a slow link is downloading it, that
user could completely tie up your server for an hour or more. During that time,
nobody else would be able to view any pages on that server. Virtually all servers
want to be able to serve more than one client at once.

To serve multiple clients simultaneously, you need to have some way to handle
several network connections at once. Python provides three primary ways to
meet that objective: forking, threading, and asynchronous I/0 (also known as
nonblocking sockets). I'll cover all three: forking in this chapter, threading in
Chapter 21, and asynchronous I/0 in Chapter 22.

Of these three, forking is probably the easiest to understand and use. However,
it's not completely portable; forking may be unavailable on platforms that aren’t
derived from UNIX.

Forking involves multitasking—the ability to run multiple processes at once,
or to simulate that ability. In this chapter, you'll learn how to apply forking to
your programs. First, you'll learn about how forking works with your operating
system and some common pitfalls to avoid. Next, you'll see how to apply forking
to server programs. Finally, the chapter will conclude with information on locking
and error handling.

Understanding Processes

Forking is tied in closely with the operating system’s nature of a process. A process
is usually defined as “an executing instance of a program.” When you start up an
editor such as Emacs, the operating system creates a new process that runs it.
When Emacs terminates, that process goes away. If you open up two copies of
Emacs, there will be two Emacs processes running. Although they both may be
instances of /usr/bin/emacs and may be started up the same way, they may be
doing different things—perhaps editing different files. Each process is distinct.

419

""----'II-lIIIIIIIIIIIIl.I'i

Chapter 20

Each process has a unique identification number called a process ID (PID). Farther
The operating system assigns the PID to a process when it starts. In the preceding previous ex
Emacs example, the two Emacs processes would each have a unique PID. originally st

Eachpr
file descript
for report.t

NOTE This chapter focuses on UNIX and Linux platforms, since those are memory, an

plfitforms for which forking is best supponf:d. The information contained in The prc

this chapter may not apply to other operating systems such as Windows. be runtiil

However, although the details may differ in important ways, all multitasking running att

operating systems (including Windows) have some notion of a process, even analysis prc

if they don't refer to it by that name. Single-tasking operating systems, such than one th
as DOS, will usually have no notion of a process. :
that line.
You can gather information about running processes by using the ps command. Understz
The syntax for ps differs from one UNIX to the next. Here's an example from Linux, Th
i i) e system
which should also work on any BSD operating system and AIX: Most A
§ % function ne
PID TTY STAT TIME COMMAND os. foxki
19817 ? S 0:00 /bin/sh /usr/bin/startkde are twe
19866 ? Ss 0:00 /usr/bin/ssh-agent startkde g frorl::
19877 ? Ss 0:02 kdeinit: Running... the process
19880 ? S 0:18 kdeinit: dcopserver --nosid could raise 2
19882 ? S 0:01 kdeinit: klauncher The for
19885 ? s 0:26 kdeinit: kded the original
19966 ? S 34:11 /usr/bin/artsd -F 5 -S 4096 -a alsa -s 60 -m artsmess Therefore,
12096 ? S 0:00 xterm def handle()
12097 pts/668 Ss 0:00 -bash pid = o
12154 pts/668 S+ 0:00 emacs -nw letter.txt if pid:
12155 ? S 0:00 xterm # Pa
12156 pts/669 Ss 0:00 -bash clos
12163 pts/669 S+ 0:00 emacs -nw report.txt hang
else:

The first column in the ps output shows the PID of a given process. The last #Ch
column, in most cases, shows what program that process is executing. In this cleg
example, the first processes listed correspond to the graphical environment KDE. pras
They represent things such as the sound system. I've cut out several dozen other
processes for this example. Whenl

that’s not er

420

 process ID (PID).
.Inthe preceding
unique PID.

ng the ps command.
gample from Linux,

2 -5 60 -m artsmess

n process. The last
f ting. In this

|l environment KDE.
several dozen other

Farther down, you can see two different versions of Emacs running as in the
previous example. One has PID 12154 and the other has PID 12163. The first was
originally started to edit letter.txt and the second was started to edit report. txt.

Each process has unique attributes. For instance, PID 12154 may have an open
file descriptor for letter.txt while PID 12163 may have an open file descriptor
for report.txt. Processes can also have unique environment variables, data in
memory, and open network connections.

The process is the fundamental unit of multitasking. Several processes may
be running simultaneously. For instance, my two Emacs processes could be
running at the same time as a web browser, a file downloading process, a data
analysis process, and a CD burning process. A single process doesn't have more

than one thing executing at once. Threading, discussed in Chapter 21, can blur
that line.

Understanding fork()

The system call used to implement forking is called fork(). It's a very unique call.
Most functions will return exactly once (with or without a value). The sys.exit()
function never returns since it terminates the program. By contrast, Python’s
os.fork() is the only function that actually returns fwice. After calling fork(), there
are two copies of your program running at once. But the second copy doesn't
restart from the beginning; both copies continue directly after the call to fork()—
the process’s entire address space is copied. Errors are possible, and os. fork()
could raise an exception; see the “Error Handling” section in this chapter for details.
The fork() call returns the process ID (PID) of the newly created process to

the original (“parent”) process. To the new (“child”) process, it returns a PID of 0.
Therefore, logic like this is common:

def handle():

pid = os.fork()

if pid:
Parent
close_child_connections()
handle_more_connections()

else:
Child
close_parent_connections()
process_this_connection()

When I said before that os. fork() is the only function that returns twice,

that’s not entirely accurate. I could write the following:

Forking

421

Chapter 20

422

def dothefork():
pid = os.fork()
if pid:
return "server"
else:
return "client"”

In this instance, dothefork() would actually return twice as well. It should
be noted, though, that any function that returns twice does, at some point, call
o0s.fork() to make that possible.

Forking is one of the most common and best-understood methods of multi-
tasking, and using forks is especially common for servers, whereby the server
typically forks for each new incoming request.

After a fork, each process has a distinct address space. Modifying a variable
in one process will not modify it in another, and that is a key difference from
threads (discussed in the next chapter). This leaves your code less vulnerable to
errors that may cause the server process for one connection to interfere with that
of another.

Forking is used, on UNIX systems, for more than just network purposes. For
instance, the typical way (and what Python does under the hood when you call
os.system()) to execute a program is to fork and then use one of the os.exec...()
functions to start the new program. The parent process can then continue on,
monitoring the child, or it can opt to have its execution blocked until the child
terminates by using one of the wait() functions (which will be described later in
the section “The Zombie Problem”).

However, forking is a fairly low-level operation. The process of actually doing
a fork takes a little bit of work to make sure that you're doing everything the oper-
ating system expects of you.

Duplicated File Descriptors

There are several side effects of forking. One of the most obvious is that of dupli-
cated file descriptors. A file descriptor can refer to things such as a socket, a file

on disk, a terminal (standard input/output/error), or certain other file-like objects.

Since a forked copy of a process is an exact copy, it inherits all the file descriptors
and sockets that the parent process had. So you wind up with a situation in which
both the parent and child process have a connection open to a single remote host.

That's bad for several reasons. One is that if both processes try to commu-
nicate over that socket, the result will likely be garbled. Another is that a call to
close() doesn't actually close the connection until both processes have called it.

Therefore, pr¢
some action
Some author:
socket, but th

The solut
socket closeil
anew process
will close the
socket that th

Zombie Pz

The semantic
is interested ir
a shell script |
A parent proc
or terminatec
os.wait() ora

During tk
the parent cal
longer execut:
the parent to:

For most
process dies, t
requests from

However,
terminates. O
zombie proce

The oper:
process termi
rudimentary’
set a signal hz
nated. While!
Problem” sec

If the pare
The system re
process will tl

e ———————————————————

Forking

Therefore, protocols (such as FTP) that use the closing of a socket as a signal that
some action has completed will be broken unless sockets are closed both places.
Some authors do, on occasion, exploit the fact that two processes can access the
socket, but this requires great care and is quite rare.

The solution to this problem is to have whichever process doesn't need a
socket close it immediately after forking. For the typical case of a server that forks
; anew process to handle each incoming request, you'll notice that the parent process
e as well. It should will close the socket for the child, and the child will close the master listening
 at some point, call socket that the parent uses. This will ensure proper operation for both processes.

od methods of multi-

hereby the server Zombie Processes

Mc fllfying avariable The semantics of fork() are built around the assumption that the parent process
y difference from is interested in finding out when and how a child process terminated. For instance,
le less vulnerable to ashell script is interested in finding out the exit code from a program that is run.

A parent process can find out not just the exit code, but also if a process crashed
or terminated due to a signal. The way a parent gathers this information is via
work purposes. For os.wait() or a similar call.

pod when you call During the time between the termination of the child process, and the time
t0fthe os. exec. ... () the parent callswait() init, the child process is said to be a zombie process. It’s no

o interfere with that

ien continue on, longer executing, yet certain memory structures are still present in order to permit
et until the child the parent to wait() on it.
€ described later in For most servers, the information returned by wait () is irrelevant. If a worker
3 process dies, the server will not do anything different; it should still go on servicing
Dfar,:tually doing requests from other clients.
g the oper- However, you must still callwait() on the child process at some point after it
: terminates. Otherwise, system resources will be consumed by the vast amount of
zombie processes, which could eventually render the server machine unusable.
The operating system makes that job fairly easy, though. Each time a child
process terminates, it sends the SIGCHLD signal to its parent process. (A signal is a
_ rudimentary way to inform a process of certain events.) The parent process can
s is that of dupli- set a signal handler to receive SIGCHLD and clean up any children that have termi-
pa sorfket, afile nated. While this sounds tricky, I'll show you an example in the “The Zombie
file-like objects. Problem” section later in this chapter that can accomplish this very easily.
the file descriptors If the parent process dies before its children, the children will continue running. ;
» ation in which The system re-parents them, setting their parent to be init (process 1). The init ‘
igle remote host. process will then take care of cleaning up zombies.
try to commu-
s that a call to _ !
es have called it. I

| 423

Chapter 20

Performance

You may think that using fork() is a slow proposition since it must copy over all
of a server each time a client connects. In reality, the performance hit of fork() is
insignificant and unnoticeable to all but the most heavily loaded systems.

Most modern operating systems, such as Linux, implement fork() with copy-
on-write memory. That means that memory isn't actually copied until it needs to
be (when one process or the other modifies it). The call to fork() itself is usually
virtually instantaneous.

The fork() call is used all over in the system. For instance, when you're using
a shell and type 1s, the shell will fork a copy of itself, and the new process will
invoke 1s. A similar thing happens if you click an icon to launch a program in a
graphical environment. The desktop manager or window manager will fork itself,
and then call exec() to start the new program. When you call os.system() froma
Python program, there’s an internal call for fork() and exec() in the same manner.

Extremely heavily loaded systems that serve many brief connections, such as
web servers for very popular sites, may not want to put up with even the small
overhead of forking. These servers sometimes use a forked pool, in which the
forking is done in advance and processes are reused. They might also choose to
use asynchronous 1/0, which has no per-process overhead, or threading, which

has less of an overhead. For general-purpose use, forking remains a good choice.

Forking First Steps

Here's a simple first example of forking. It's going to fork, and both processes will
display some messages.

#1/usx/bin/env python
First fork example - Chapter 20 - firstfork.py

import os, time
print "Before the fork, my PID is", os.getpid()

if os.fork():
print "Hello from the parent. My PID is", os.getpid()

else:
print "Hello from the child. My PID is", os.getpid()

time.sleep(1)
print "Hello from both of us."

Th
fork()
they be
what t

$./fiz
Before
Hello £
Hello £
|
Hello f
Hello f
On
messag
The op
should
No
the cod
there a1

The Z

Let’s tak
comma
strate th
and taky

#!/usz/b
Zombie

import o
print "B

pid = os
if pid:

print
prini
time,

: Forking

This program will print out its process ID prior to forking. Then, because
fork() returns twice, the parent and child each print out a unique message, and
copy over all - theyboth fall out of the if, wait for one second, then display a greeting. Here’s
> hit of fork() is 3 what the output looks like:

$./firstfork.py

Before the fork, my PID is 2700

Hello from the child. My PID is 2701

Hello from the parent. My PID is 2700
. one second later ...

Hello from both of us.

Hello from both of us.

On some systems, you may observe that the order of the parent and child
messages is different, and they may be different each time you run the program.
The operating system makes no guarantee about that, as in fact, both processes
should be executing simultaneously. .
3 Notice howHello from both of us is displayed twice, even though it occurs in |
the code only once. That’s because, by the time the execution reaches that point,
there are actually two copies of the program running.

The Zombie Problem

gt It i - Let’s take a look at the aforementioned zombie problem in action. The UNIX

h processes will k - command ps shows a list of active processes. Here’s an example that will demon-
T 4 ~ strate the zombie problem. While it's running, open up another terminal session
e p ~ and take a look at the state of processes.

#!/usr/bin/env python
Zombie problem demonstration - Chapter 20 - zombieprob.py

import os, time
print "Before the fork, my PID is", os.getpid()

~ pid = os.fork()
if pid: it
print "Hello from the parent. The child will be PID %d" % pid '
print "Sleeping 120 seconds..." i
time.sleep(120)

Chapter 20

426

The child process will terminate immediately after the fork (fork() returns
PID 0 for the child, so it will fail the if test, and there’s nothing else for it to do).
The parent doesn't clean it up, but rather waits around for a while. Run the program
as follows:

$./zombieprob.py

Before the fork, my PID is 2719

Hello from the parent. The child will be PID 2720
Sleeping 120 seconds...

Now, in another terminal session, inspect the results without stopping
the program:

$ ps ax | grep 2719
2719 pts/2 S

$ ps ax | grep 2720
2720 pts/2 2

0:00 python ./zombieprob.py
0:00 [python] <defunct>

You can see that the child process is a zombie; the 7 in the third column, as
well as the <defunct> at the end of the output, indicate that. Once the parent ter-
minates, you'll be able to confirm that neither process exists. The shell cleans up
the parent process, and the child process gets re-parented to init, which will
clean it up.

The Role of init

The init program is always the first process that runs on the system and always
has PID 1. Its main roles are starting up and shutting down the system. In this
case, there’s another special role for init. If a process dies, and there are still
children of it out there on the system (zombie or not), the operating system will
change that process's parent to be PID 1—init. The init program will watch for
zombie children in the same way that normal processes will, so these processes
will get cleaned up.

Solving the Zombie Problem with Signals

Here's a program that solves the zombie problem:

#!/usx/bin/e
Zombie pre

import os, t

def chldhand
"""Signa
a child
while 1:
R

try:

exce|

t

prinf

Reset 1
signal,s:

Install sig
child proce
signal.signal

print "Before

pid = os.fork

if pid:
print "He
print "Sl
time.slee
print "SL

else:
print "Ch
time.sleg

First, the
called whene
first argumen
and the secor
exist. If there
PID and exitil
or waitpid()t

The call i
processes hay

Forking
Q;qu()returns ' #!/usr/bin/env python
else for it to o). : # Zombie problem solution - Chapter 20 - zombiesol.py
Run the program | |

import os, time, signal I

def chldhandler(signum, stackframe): |
"""Signal handler. Runs on the parent and is called whenever
a child terminates."""
while 1:
Repeat as long as there are children to collect.

try: |
result = os.waitpid(-1, os.WNOHANG)
except: |
break
print "Reaped child process %d" % result[0]
Reset the signal handler so future signals trigger this function
! : signal.signal(signal.SIGCHLD, chldhandler)

Install signal handler so that chldhandler() gets called whenever
child process terminates.
signal.signal(signal.SIGCHLD, chldhandler)

print "Before the fork, my PID is", os.getpid()

pid = os.fork()

%) if pid:
i print "Hello from the parent. The child will be PID %d" % pid
ik : print "Sleeping 10 seconds..."

time.sleep(10)

print "Sleep done."
else:

print "Child sleeping 5 seconds...”

time.sleep(5)

First, the program defines the signal handler chldhandler(). This function is '
SRR 5 - called whenever SIGCHLD is received. It has a simple loop calling os.waitpid(). The
k first argument to os.waitpid(), 1, means to wait for any terminated child process,

: : and the second tells it to return immediately if no more terminated processes
L 3 exist. If there are child processes waiting, waitpid() returns a tuple of a process’s
PID and exit information. Otherwise, it raises an exception. The act of usingwait() |
orwaitpid() to collect information about terminated processes is called reaping. '
The call is in a loop because a single SIGCHLD could indicate multiple child '

processes have died. Finally, after the loop, the signal handler is reactivated. This

