
CHAPTER20

Forking

VIRTUALLYALLAUTHORSof servers,and many authors ofclients, need to write pro-
grams that can effectively handle multiple network connections simultaneously.
As an example, consider a web server. If your server could only handle one con-
nection at a time, you could only be transmitting a single page at a time. If you
have a large file on your server and a user on a slow link is downloading it, that
user could completely tie up your server for an hour or more. During that time,
nobody else would be able to view any pages on that server. Virtually all servers
want to be able to serve more than one client at once.

Toserve multiple clients simultaneously, you need to have some way to handle
several network connections at once. Python provides three primary ways to
meet that objective: forking, threading, and asynchronous I/O (also known as
nonblocking sockets). I'll cover all three: forking in this chapter, threading in
Chapter 21, and asynchronous I/O in Chapter 22.

Of these three, forking is probably the easiest to understand and use. However,
it's not completely portable; forking may be unavailable on platforms that aren't
derived from UNIX.

Forking involves multitasking-the ability to run multiple processes at once,
or to simulate that ability. In this chapter, you'll learn how to apply forking to
your programs. First, you'll learn about how forking works with your operating
system and some common pitfalls to avoid. Next, you'll see how to apply forking
to server programs. Finally, the chapter will conclude with information on locking
and error handling.

Understanding Processes

Forking is tied in closely with the operating system's nature of a process. Aprocess

is usually defined as "an executing instance of a program." When you start up an
editor such as Emacs, the operating system creates a new process that runs it.
When Emacs terminates, that process goes away. If you open up two copies of
Emacs, there will be two Emacs processes running. Although they both may be
instances of /usr/bin/emacs and may be started up the same way, they may be
doing different things-perhaps editing different files. Each process is distinct.

419

Chapter 20

420

Each process has a unique identification number called a process ID (PID).
The operating system assigns the PID to a process when it starts. In the preceding
Emacs example, the two Emacs processes would each have a unique PID.

Youcan gather information about running processes by using the pscommand.
The syntax for ps differs from one UNIXto the next. Here's an example from LimlX,
which should also work on any BSD operating system and AIX:

$ ps x
PID TTY

19817 ?

19866 ?

19877 ?

19880 ?

19882 ?

19885 ?

19966 ?

12096 ? S

12097 pts/668 Ss

12154 pts/668 S+

1215S ? S

12156 pts/669 Ss

12163 pts/669 S+

STAT

S

Ss

Ss

TIME COMMAND

0:00 /bin/sh /usr/bin/startkde

0:00 /usr/bin/ssh-agent startkde

0:02 kdeinit: Running...

0:18 kdeinit: dcopserver --nosid
0:01 kdeinit: klauncher
0:26 kdeinit: kded

34:11 /usr/bin/artsd -F 5 -S 4096 -a alsa -5 60 -m artsmess

S

S

S

S

0:00 xterm

0:00 -bash
0:00 emacs -nw letter.txt

0:00 xterm

0:00 -bash

0:00 emacs -nw report.txt

The first column in the ps output shows the PID of a given process. The last
column, in most cases, shows what program that process is executing. In this
example, the first processes listed correspond to the graphical environment KDE.
They represent things such as the sound system. I've cut out several dozen other
processes for this example.

~

Farther

previous ex
originally st

Eachpr
file descript
for report. t
memory, ar

Theprc
be running
running at t
analysis prc
than one th
that line.

Understc

The system
Most functi
function ne

os. forkO is
are two cop
restart from

the process
could raise c

The for

the original
Therefore. I,

def handleO

pid = os

if pid:
Pa

dos

hand
else:

Ch

dos

proe

When I
that's not er

Forking

iince those are
on contained in
as Wmdows.

Farther down, you can see two different versions of Emacs running as in the
previous example. One has PID 12154 and the other has PID 12163. The first was
originally started to edit letter. txt and the second was started to edit report. txt.

Each process has unique attributes. For instance, PID 12154may have an open
file descriptor for letter. txt while PID 12163 may have an open file descriptor
for report. txt. Processes can also have unique environment variables, data in
memory, and open network connections.

The process is the fundamental unit of multitasking. Several processes may
be running simultaneously. For instance, my two Emacs processes could be
running at the same time as a web browser, a file downloading process, a data
analysis process, and a CD burning process. A single process doesn't have more
than one thing executing at once. Threading, discussed in Chapter 21, can blur
that line.

aprocessID (pm).
Its. In the preceding

I unique pm.

allmultitasking
if a process, even.
g systems, such

Understanding fork()

sa -5 60 -m artsmess

The system call used to implement forking is called fork (). It's a very unique call.
Most functions will return exactly once (with or without a value). The sys.exit()
function never returns since it terminates the program. By contrast, Python's
os. fork 0 is the only function that actually returns twice. Mer calling forkO, there

are two copies of your program running at once. But the second copy doesn't
restart from the beginning; both copies continue directly after the call to fork ()-
the process's entire address space is copied. Errorsare possible, and os.fork ()
could raise an exception; see the "Error Handling" section in this chapter for details.

The forkO call returns the process m (pm) of the newly created process to
the original ("parent") process. To the new ("child") process, it returns a PID of O.
Therefore, logic like this is common:

en process. The last
executing. In this
al environment KDE.
t several dozen other

def handle():

pid = os.forkO

if pid:
Parent

close_child_connections()

handle_more_connections()
else:

Child

close_parent_connections()

process_this_connection()

When I said before that os. fork() is the only function that returns twice,
that's not entirely accurate. I could write the following:

421

Chapter 20

422

..

def dothefork():

pid = os. forkO

if pid:
return "server"

else:

return" client"

In this instance, dothefork () would actually return twice as well. It should
be noted, though, that any function that returns twice does, at some point, call
as. fork () to make that possible.

Forking is one of the most common and best-understood methods of multi-
tasking, and using forks is especially common for servers, whereby the server
typically forks for each new incoming request.

After a fork, each process has a distinct address space. Modifying a variable
in one process will not modify it in another, and that is a key difference from
threads (discussed in the next chapter). This leaves your code less vulnerable to
errors that may cause the server process for one connection to interfere with that
of another.

Forking is used, on UNIX systems, for more than just network purposes. For
instance, the typical way (and what Python does under the hood when you call
as. systemO) to execute a program is to fork and then use one of the as. exec... 0
functions to start the new program. The parent process can then continue on,
monitoring the child, or it can opt to have its execution blocked until the child
terminates by using one of the wait () functions (which will be described later in
the section "The Zombie Problem").

However, forking is a fairly low-level operation. The process of actually doing
a fork takes a little bit of work to make sure that you're doing everything the oper-
ating system expects of you.

Duplicated File Descriptors

There are several side effects offorking. One of the most obvious is that of dupli-
cated file descriptors. A file descriptor can refer to things such as a socket, a file
on disk, a terminal (standard input/ output/ error), or certain other file-like objects.

Since a forked copy of a process is an exact copy, it inherits all the filedescriptors
and sockets that the parent process had. So you wind up with a situation in which
both the parent and child process have a connection open to a single remote host.

That's bad for several reasons. One is that if both processes try to commu-
nicate over that socket, the result will likely be garbled. Another is that a call to
close () doesn't actually close the connection until both processes have called it.

Therefore, pn
some action}
Some authon

socket, but th
The solut

socket closeil

a new process
will close the
socket that th

Zombie PI

The semantic

is interested iI

a shell script j

A parent proe
or terminatec

os.waitO are

During t}

the parent caJ

longer execut

the parent to
For most

process dies, 1

requests frOlT

However,
terminates. 0

zombie proCE
The oper

process termi
rudimentary.

set a signal he
nated. While

Pro blem" seci

If the pan

The system n

process will tJ

-

'ce as well. It should

~s,at some point, call

Therefore, protocols (such as FTP) that use the closing of a socket as a signal that
some action has completed will be broken unless sockets are closed both places.
Some authors do, on occasion, exploit the fact that two processes can access the
socket, but this requires great care and is quite rare.

The solution to this problem is to have whichever process doesn't need a
socket close it immediately after forking. For the typical case of a server that forks
a new process to handle each incoming request, you'll notice that the parent process
will close the socket for the child, and the child will close the master listening
socket that the parent uses. This will ensure proper operation for both processes.

odmethods of multi-

wherebythe server Zombie Processes

Modifying a variable
~ydifference from

Ideless vulnerable to

to interfere with that

The semantics of forkO are built around the assumption that the parent process
is interested in finding out when and how a child process terminated. For instance,
a shell script is interested in finding out the exit code from a program that is run.
A parent process can find out not just the exit code, but also if a process crashed
or terminated due to a signal. The way a parent gathers this information is via
os.waitO or a similar call.

During the time between the termination of the child process, and the time
the parent calls wait () in it, the child process is said to be a zombie process. It's no
longer executing, yet certain memory structures are still present in order to permit
the parent to waitO on it.

For most servers, the information returned by wait 0 is irrelevant. If a worker
process dies, the server will not do anything different; it should still go on servicing
requests from other clients.

However, you must still call wait () on the child process at some point after it
terminates. Otherwise, system resources will be consumed by the vast amount of
zombie processes, which could eventually render the server machine unusable.

The operating system makes that job fairly easy, though. Each time a child
process terminates, it sends the SIGCHLDsignal to its parent process. (Asignal is a
rudimentary way to inform a process of certain events.) The parent process can
set a signalhandler to receiveSIGCHLDand clean up any children that have termi-
nated. While this sounds tricky, I'll show you an example in the "The Zombie
Problem" section later in this chapter that can accomplish this very easily.

If the parent process dies before its children, the children will continue running.
The system re-parents them, setting their parent to be init (process 1). The init
process will then take care of cleaning up zombies.

~twork purposes. For

hood when you call

e of the os .exec.. . 0
then continue on,
:keduntil the child
e describedlater in

:essof actually doing

everything the oper-

ous is that of dupli-

as a socket, a file

lerfile-like objects.

the filedescriptors
situation in which

ngleremote host.

s try to commu-
~ris that a call to

iseshave called it.

Forking

423

Chapter 20

424

Performance

You may think that using fork () is a slow proposition since it must copy overall
of a server each time a client connects. In reality, the performance hit of forkO is
insignificant and unnoticeable to all but the most heavily loaded systems.

Most modern operating systems, such as Linux, implement fork () with copy-
on-write memory. That means that memory isn't actually copied until it needs to
be (when one process or the other modifies it). The call to fork () itself is usually
virtually instantaneous.

The fork () call is used all over in the system. For instance, when you're using
a shell and type Is, the shell will fork a copy of itself, and the new process will
invoke Is. A similar thing happens if you click an icon to launch a program in a
graphical environment. The desktop manager or window manager will fork itself,
and then call exec() to start the new program. When you call os.system() froma
Python program, there's an internal call for fork () and exec() in the same manner.

Extremely heavily loaded systems that serve many brief connections, suchas
web servers for very popular sites, may not want to put up with even the small
overhead of forking. These servers sometimes use aforked pool, in which the
forking is done in advance and processes are reused. They might also choose to
use asynchronous I/O, which has no per-process overhead, or threading, which
has less of an overhead. For general-purpose use, forking remains a good choice.

The

Forking First Steps

Here's a simple first example of forking. It's going to fork, and both processes will
display some messages.

#!/usr/bin/env python

First fork example - Chapter 20 - firstfork.py

import os, time

print "Before the fork, my PID is", os.getpidO
print"

if os. forkO:

print "Hello from the parent.
else:

print "Hello from the child.

MyPID is", os.getpidO pid =OS

j
if pid:

prin

l

'

prin
time

MyPID is", os.getpidO

time.sleep(l)

print "Hello from both of us."

"Itmust copy over all
lance hit offorkO is
aded systems.
nt forkO with copy-
lied until it needs to

rkO itself is usually

This program will print out its process ID prior to forking. Then, because
forkO returns twice, the parent and child each print out a unique message, and
they both fall out of the if, wait for one second, then display a greeting. Here's
what the output looks like:

$./firstfork.py

Before the fork, my PIO is 2700

Hello from the child. MyPIO is 2701

Hello from the parent. MyPIO is 2700
... one secondlater ...

Hello from both of us.

Hello from both of us.

, when you're using
new process will
ch a program in a
lagerwillfork itself,
os. system0 from a
the same manner.

.onnections, such as
Itheven the small

JO[,in which the

ight also choose to
Ir threading, which
ains a good choice.

On some systems, you may observe that the order of the parent and child
messages is different, and they may be different each time you run the program.
The operating system makes no guarantee about that, as in fact, both processes
should be executing simultaneously.

Notice how Hello from both of us is displayed twice, even though it occurs in
the code only once. That's because, by the time the execution reaches that point,
there are actually two copies of the program running.

The Zombie Problem

Ibothprocesses will

Let'stake a look at the aforementioned zombie problem in action. The UNIX
command ps shows a list of active processes. Here's an example that will demon-
strate the zombie problem. While it's running, open up another terminal session
and take a look at the state of processes.

#!/usr/bin/env python

Zombieproblemdemonstration - Chapter 20 - zombieprob.py

import os, time

print "Before the fork, my PID is", os .getpidO

pid = os. forkO

if pid:

print "Hello from the parent. The child will be PID %d" % pid

print "Sleeping 120 seconds..."

time.sleep(12o)

Forking

425

.

Chapter 20

426

The child process will terminate immediately after the fork (fork() returns
PID 0 for the child, so it will fail the if test, and there's nothing else for it to do).

The parent doesn't clean it up, but rather waits around for a while. Run the program
as follows:

#! /usr/bin/E

Zombie prc

import as) t

$./zombieprob.py

Before the fork, myPIDis 2719

Hello from the parent. The child will be PID2720

Sleeping 120 seconds...

def chId hand

"" "Signa

Now, in another terminal session, inspect the results without stopping
the program:

a child

while 1:

R

try:

$ ps ax I grep 2719

2719 ptS/2 S
$ ps ax I grep 2720

2720 ptS/2 Z

excel
I

prin1
Resetj

signal. s:

0:00 python ./zombieprob.py

0:00 [python] <defunct>

You can see that the child process is a zombie; the Zin the third column, as
well as the <defunct> at the end of the output, indicate that. Once the parent ter-
minates, you'll be able to confirm that neither process exists. The shell cleans up
the parent process, and the child process gets re-parented to init, which will
clean it up.

Install si~
child procE

signal. signa]

print "BeforE

...

pid = as.fork
if pid:

print "He

print "51
time.slee

print "51
else:

print "Ch

time.sleei

The Role of init

The ini t program is alwaysthe first process that runs on the system and always
has PID 1. Its main roles are starting up and shutting down the system. In this
case, there's another special role for ini t. If a process dies, and there are still
children of it out there on the system (zombie or not), the operating system will
change that process's parentto be PID l-ini t. The ini t program willwatch for
zombie children in the same way that normal processes will, so these processes
will get cleaned up. First, the

called whene

first argumen
and the seeD!

exist. If there

PID and exitiJ

or waitpid() t
The calli

processes ha,

...

Solving the Zombie Problem with Signals

Here's a program that solves the zombie problem:

'k (forkO returns
else for it to do).

e. Run the program

#!/usr/bin/env python

Zombieproblemsolution - Chapter 20 - zombiesol.py

import os, time, signal

def chldhandler(signum, stackframe):

"" "Signal handler. Runs on the parent and is called whenever
a child terminates."""

out stopping

while 1:

Repeat as long as there are children to collect.

try:

result = os.waitpid(-l, os.WNOHANG)

except:
break

print "Reaped child process %d" % result[o]

Reset the signal handler so future signals trigger this function

signal.signal(signal.SIGCHLD, chldhandler)

third column, as

ce the parent ter-
l1eshell cleans up
nit, which will

Install signal handler so that chldhandler() gets called whenever

child process terminates.

signal.signal(signal.SIGCHLD, chldhandler)

print "Before the fork, my PID is", os.getpidO

, """""""""

pid = os. forkO

if pid:

print "Hello from the parent. The child will be PID %d" % pid

print "Sleeping 10 seconds..."

time.sleep(10)

print "Sleep done."
else:

print "Child sleeping 5 seconds..."

time.sleep(S)

tern and always

system. In this
there are still

lting system will
m will watch for

these processes

' """"""""'"

First, the program defines the signal handler chldhandler(). This function is
calledwhenever SIGCHLDis received.Ithas a simple loop callingos.waitpid (). The
first argument to os. waitpid(), -1, means to wait for any terminated child process,
and the second tells it to return immediately if no more terminated processes
exist. If there are child processes waiting, waitpid () returns a tuple of a process's
PIDand exit information. Otherwise, it raises an exception. The act of using wait ()
or wai tpid () to collect information about terminated processes is called reaping.

The call is in a loop because a single SIGCHLDcould indicate multiple child
processes have died. Finally, after the loop, the signal handler is reactivated. This

Forking

427

I

\
I

