Monitoring the ATLAS TDAQ Network at CERN

Lucian LEAHU

Brasov, 15/01/2009

Plus physicists!

- Network dimensioned to meet 'requirements'
- Maximum average link occupancy = 60%
- Should mean peace of mind for Network Support
- Actually seen as a challenge by physicists
 - 40% for free! Turn up the wick until something breaks!
- · Continuous running out of spec!
- Must distinguish between 'real' and 'self inflicted' problems

3

Commissioning

Basic question:

Does any of it work???? Monitor everything!

ICMP:

Internet Control Message Protocol

SNMP:

Simple

Network Management

Protocol

SPECTRUM

Tells you it's alive Tells you if it dies Fetches status info.. - and hides it!

Commercial versus Proprietary

- Special needs:
 - Multiple networks per processor
 - Want to see whole picture for system analysis
 - Want to see all detail for component analysis
 - Want to see traffic volume visually
 - Want traffic/errors qualified
- Spectrum CORBA API clumsy
- Multiple requests hits the CPU hard

Transition to displays

- So far have concentrated on low level port and switch monitoring and diagnostics.
- Identified scaling issues
- Want to have a display with a system view
- Want to retain architectural model
- Want to exploit real time stats

Diagnostic Tools: 1

- YATG (Yet Another Traffic Grapher
 - High speed SNMP-based traffic monitoring (the switch is the limiting factor)
 - Fine time granularity statistics for selected device interfaces
- ATLAS-like traffic bandwidth measurements
 - Distributed applications replicate the transactional request-response transfer protocol
 - Demonstrate maximum achievable bandwidth

Diagnostic tools:3 SFLOW (1)

- sFlow is the standard for statistical packet sampling
 - Each network port → sampling system
 - All packet samples → central location (software)
 - Analysis → information about the content of the traffic
- By collecting packet samples, the packets can be classified into flows
 - A flow ~ network conversation between two applications
 - The bandwidth occupancy for each flow can be estimated
- We developed an sFlow analysis application in order to study the technology

Summary

- large scale network
- monitor, diagnose
 - commercial tools
 - "in-house" built software
 - plots for 6000 ports
 - different levels of visual abstraction
- 24/7 operation
- errors not welcome