Plumbing at 10Gbps

The art and science of high speed data transmission

Brian Martinescu CERN Geneva

<section-header>

Data Moving Problem

- Detector produces analogue signals
- Conversion to digital close to detector
- Processing is done 'far' away
- Data starts life in a silicon chip
- Moved to a cable
- Received in a chip
- · Electrical connectivity assured
- So what's the problem?

Once upon a time, many many years ago Digital Electronics were for MEN

> YES NO RIGHT WRONG ON OFF ONE ZERO TRUE FALSE

It was the golden age of Logic, Truth Tables, State Machines and Rock and Roll

Building Logic was a really easy job Wire logic blocks together Add up the delay times from the data sheet And work out the Clock Timing budget.

Ra	aw Ma	ate	rial:	Tol	erances
Lam .00 .00 .00 .01 .02 .03	inate Thickne Core Thickne ange(inches) 16 to .0045 46 to .0065 66 to .0120 21 to .0199 00 to .0309 10 to .0409	ess & To ess ±.0010 ±.0015 ±.0020 ±.0025 ±.0030 ±.0065	Tolerances Toleran 1 Class ±.0007 ±.0010 ±.0015 ±.0020 ±.0025 ±.0040	5 2 Class ±.0005 ±.0007 ±.0010 ±.0015 ±.0020 ±.0030	3 Class 5 .0005 + .0010 .0007 + .0012 .0010 + .0015 0015 + .0020 .0020 + .0025 .0030 + .0035
Prepreg I Thickness 1.7mils 2.5mils 3.5mils 4.4mils 5.0mils 6.9mils	Resin Conter % Resin 75±3 66±3 56±3 56±3 50±3 43±3	ıt		C4 18 35	opper Cladding micron ±10% micron ±10%

Introduction to TDR

Mismatched printed circuit traces, connectors, stubs and loops in decoupling circuits, all are sources of 'extra' L and C in the circuit.

How much is there, what effect do they have, and when do we care? You can measure it by injecting a pulse and watch for the echos.

Q: Why are there echoes?

A: Impedance mismatch.

Return to the transmission line theory.

The story so far. We have seen that

- we need to have well engineered transmission lines
- there is a physical bandwidth limitation
- you need a lot of bandwidth to obtain 'clean' signals
- care must be taken with connectors and cables
- differential transmission is the best point to point solution

BUT

That was all just for a single channel of 'bits' What about timing information? What about control information? We look now at bit sequence transmission

8B10B

• 10 bits used to encode each octet

- Each code group must have:
 - 5 ones and 5 zeroes
 - Or 4 ones and 6 zeroes

Or 6 ones and 4 zeroes
 Running disparity calculation
 Maintains DC Balance
 Maintains easy clock synchronisation
 Adds overhead:

 for a 1Gb/s 'payload we need to send 1.25Gb/s

10Gb/s for a Backplane?: do the math

- 10Gb/s payload +10/8 overhead=12.5Gb/s
- Divide by two: 6Gb/s no way (Oh really?)
- Divide by four: >3Gb/s ???? Well maybe
- 3.125Gb/s per channel
- NRZ gives a bandwidth need of ~1.6 Ghz
- Haven't got it for backplane distances
- High frequency losses
- · What if we could boost the high frequency components
- More power, more cross talk, more interference
- But a backplane is a 'sheltered' environment + lots of power

First we look at 1Gb Ethernet

Divide by four using four channels 250Mb/s over 4 channels=1Gb/s Encode 2 bits/symbol with redundancy for error Resulting 125 Mbaud (~80MHz bandwidth): • transmissible with low interference radiation

Still many problems to overcome We reduce the symbol rate to fit the bandwidth But have traded bandwidth for signal to noise problems

1000Base-T	10GBase-T		
5-level PAM (2b/symbol)	10-level PAM (3 b/symbol)		
8-state trellis over 4 pairs	8-state trellis over 4 pairs		
Full-duplex echo canceller	Full-duplex echo canceller		
125Mbaud, ~80MHz BW	833Mbaud, ~450MHz BW		
No FEXT cancellation	FEXT Cancellation required		

-4

No more Digital Electronics only Analogue DSP experts only need apply

1000 2000 3000 4000 5000 6000 7000 8000 9000

Message

Understand fundamental transmission issues. Do the best you can with connectivity engineering Keeping costs to an affordable level Everything else is signal processing!