IPCV'09 - The 2009 International Conference on Image Processing, Computer Vision, and Pattern Recognition Las Vegas, Nevada, USA (July 13-16, 2009)

Action Recognition for Simple and Complex Actions using Time of Flight Cameras

Serban Oprisescu, Constantin Burlacu, Vasile Buzuloiu¹, Mihai Ivanovici²

¹Image Processing and Analysis Laboratory, University "Politehnica" of Bucuresti, Romania

²Electronics and Computers, Transilvania University, Brasov, Romania

Email: {soprisescu, cburlacu, <u>buzuloiu}@alpha.imag.pub.ro</u>
<u>M.Ivanovici@gmail.com</u>

Introduction

- Time-of-Flight (ToF) cameras:
 - active systems
 - record for each pixel both *intensity* and distance to the camera;
 - may be successfully used for
 - face detection
 - · video surveillance
 - respiration monitoring etc.

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

The ToF principle

- It works like a ... BAT
- the distance
 - proportional to the phase shift between the *direct* and the *reflected* waves

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

Advantages / disadvantages

- Range of "sight" depending on the integration time
 - "Myopic" behavior for small integration time intervals
 - "Hypermetropic" behavior for long integration time intervals
- Correlate the intensity and distance images for action recognition
- Segmentation may be easier on distance images (simple thresholding)

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

Goals of the research

- Action Recognition using ToF cameras
 - Distance image processing
 - Movement representation by tracking body key points
 - Function characterization for discrimination, using features (e.g. total variation)

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

Action Recognition - Our Approach

- Segmentation of the ToF distance image for silhouette extraction
- Skeletonization and Key Points extraction
- Tracking of the key points and computing their trajectories
- · Feature extraction
- Action recognition based on computed features

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

Experimental results • Show time! "walk" and "box" Mihai Ivanovici IPCV'09 Las Vegas, Nevada, USA 11

Discriminating the trajectories How to discriminate between different movements? Analyzing the complexity of the "signals" Function characterization Fractal analysis (fractal dimension)

Trajectories -> Features

1) The variation of the function:

$$\Delta f = f_{\text{max}} - f_{\text{min}}$$

2) The total variation v of the function:

$$V = \sum_{k=2}^{N} |f(k) - f(k-1)|$$

Mihai Ivanovio

IPCV'09 Las Vegas, Nevada, USA

Trajectories -> Features (II)

3) The real mean speed, computed as the mean of instantaneous speeds for each frame:

$$S_r = \frac{1}{N} \sum_{k=2}^{N} (f(k) - f(k-1))/t$$

4) The absolute mean speed, computed as the mean of the absolute value of each instantaneous speed:

$$S_{a} = \frac{1}{N} \sum_{k=2}^{N} \left| \frac{(f(k) - f(k-1))}{t} \right|$$

Mihai Ivanovio

IPCV'09 Las Vegas, Nevada, USA

Conditions defining the 6 actions

Action		Conditions			
Walk	$V_x > thr$	$V_{Hx} >> \Delta_{Hx}$	v _x avr		
Carry	$V_x > thr$	$V_{Hx} \cong 0$	v _x avr	any y small	
Run	$V_x > thr$	$V_{Hx} >> \Delta_{Hx}$	v _x big		
Box	$V_x >> \Delta_x$	$V_{Hx} >> \Delta_{Hx}$	V _{vHx} big		
Jump	V _y > thr	V _{Hy} > thr	v _y big	any x	
Bent	V _y > thr	V _{Hy} > thr	v _y avr	small	

 V_x and V_y are the total variations of x(k) and y(k) respectively; V_{Hx} , V_{Hy} are total variations of one key point on hand coordinates; v_x , v_y are the speeds on corresponding coordinates; V_{vHx} is the total variation of the speed of hand key point on x; Δ_x and Δ_{Hx} are defined in (1).

Mihai Ivanovici

IPCV'09 Las Vegas, Nevada, USA

Conclusions

• Using ToF camera

- Distance image processing
- Straightforward and more efficient segmentation
- · Trajectory characterization
 - Based on function features (e.g. total variation of a function)

Mihai Ivanovici

15

IPCV'09 Las Vegas, Nevada, USA

16

3