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Vision is a complex process that integrates multiple aspects of an image: spatial frequencies, topology and colour. Unfortunately,
so far, all these elements were independently took into consideration for the development of image and video quality metrics,
therefore we propose an approach that blends together all of them. Our approach allows for the analysis of the complexity of
colour images in the RGB colour space, based on the probabilistic algorithm for calculating the fractal dimension and lacunarity.
Given that all the existing fractal approaches are defined only for gray-scale images, we extend them to the colour domain. We
show how these two colour fractal features capture the multiple aspects that characterize the degradation of the video signal, based
on the hypothesis that the quality degradation perceived by the user is directly proportional to the modification of the fractal
complexity. We claim that the two colour fractal measures can objectively assess the quality of the video signal and they can be
used as metrics for the user-perceived video quality degradation and we validated them through experimental results obtained for
an MPEG-4 video streaming application; finally, the results are compared against the ones given by unanimously-accepted metrics
and subjective tests.

1. Video Quality Metrics

There is a plethora of metrics for the assessment of image
and video quality [1]. They used to be: (i) full reference
or reference based, when both the video sequence at the
transmitter and the video sequence at the receiver are
available, then the sequence at receiver is compared to the
original sequence at transmitter, and (ii) no reference or
without reference, when the video sequence at the transmitter
is not available; therefore, only the video sequence at the
receiver is being analyzed. Recently a third class of metrics
emerged: the so-called “reduced-reference” [2, 3] which are
based on the sequence at the receiver and on some features
extracted from the original signal at the transmitter. This is
the case of the fractal measures we propose.

For the quality assessment of an image or a video
sequence, the metrics can be also divided into subjective and
objective. During the last decade, several quality measures,
both subjective and objective, have been proposed, especially

for the assessment of the quality of an image after lossy
compression, image rendering on screen or for digital cinema
[4]. Most of them use models of the human visual system
to express the image perception as a specific pass-band filter
(to be more precise, a pass-band filter for the achromatic
vision and a low pass-filter for the chromatic one) [5]. In this
paper we explore a well-known property of the human visual
system, that is, to be “sensitive” to the visual complexity
of the image. We use fractal features—thus a multiscale
approach—to estimate this complexity. In addition, we
rely on the hypothesis that the fractal geometry is capable
of characterizing the image complexity in its whole—the
space—frequency complexity and the colour content—thus
the complexity of the image reflected in a certain colour
space, and any of the aspects of the image degradation, like a
more spread power spectrum and local discontinuities of the
natural correlation of the image.

The most complex metrics are based on models of the
human visual system, but some of them are now classical
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signal fidelity metrics like the signal-to-noise ratio (SNR)
and its variant peak SNR (PSNR), the mean-squared error
(MSE) and root MSE (RMSE) which are simply distance
measures. These simple measures are unable to capture
the degradation of the video signal from a user perspec-
tive [6]. On the other hand, the subjective video quality
measurements are time consuming and must meet complex
requirements (see the ITU-T recommendations [7–10])
regarding the conditions of the experiments, such as viewing
distance and room lighting. However, the objective metrics
are usually preferred, because they can be implemented as
algorithms and are human-error free.

The Video Quality Experts Group (VQEG) (http://
www.vqeg.org/) is the main organization dealing with the
perceptual quality of the video signal and they reported
on the existing metrics and measurement algorithms [11].
A survey of video-quality metrics based on models of the
human vision system can be found in [12] and several no-
reference blockiness metrics are studied and compared in
[13]. A more recent state-of-the-art of the perceptual criteria
for image quality evaluation can be found in [14]. OPTI-
COM (http://www.opticom.de/) is the author of one metric
for video quality evaluation called “Perceptual Evaluation of
Video Quality” (PEVQ), which is a reference-based metric
used to measure the quality degradation in case of any video
application running in mobile or IP-based networks. The
PEVQ Analyzer [15] measures several parameters in order
to characterize the degradation: brightness, contrast, PSNR,
jerkiness, blur, blockiness, and so forth. Some of the first
articles that proposed quality metrics inspired by the human
perception [16, 17] drew also the attention on some of the
drawbacks of the MSE and the importance of subjective
tests. Among the unanimously accepted metrics for the
quantification of the user-perceived degradation are the ones
proposed by Winkler use image attributes like sharpness
and colourfulness [18–20]. In [21], the authors propose a
no-reference quality metric also based on the contrast, but
taking into account the human perception, and in [22], the
hue feature is exploited. Wang proposes in [23] a metric
based on the structural similarity between the original image
and the degraded one. The structural similarity (SSIM)
unifies in its expression several aspects: the similarity of the
local patch luminances, contrast, and structure. This metric
was followed by a more complex one, based on wavelets,
as an extension of SSIM to the complex wavelet domain,
inspired by the pattern recognition capabilities of the human
visual system [24]. Together with Wang, Rajashekar is the
author of one of the latest image quality metric based on an
adaptive spatiochromatic signal decomposition [25, 26]. The
method constructs a set of spatiochromatic function basis for
the approximation of several distortions due to changes in
lighting, imaging, and viewing conditions. Wavelets are also
used by Chandler and Hemami to develop a visual signal-
to-noise ratio (VSNR) metric [27] based on their recent
psychophysical findings [28–30]. Related to the wavelets, a
multiresolution model based on the natural scene statistics is
used in [31].

Most of the existing metrics for the video quality are used
to quantify the degradation introduced by the compression

algorithm itself, as a consequence of the reduced bit rate.
We are interested in objectively assessing the degradation in
video quality caused by the packet loss at network level [32].
In our experiments, we identified two kinds of degradation:
(i) the degradation that affects the sequence, that is, the
temporal component of the signal and (ii) the degradation
that affects the frames, that is, the spatial component. Given
the way the majority of the video frames are degraded (see
Figure 1), the most useful metric would be the blockiness,
which objectively quantifies the impairments. To quantify
the degradation of a single video frame, one could simply
measure the affected area in number of pixels of number of
8 × 8 blocks or an appropriate perceptual metric, able to
quantify the degradation from a human perspective. Apart
from blockiness, the degraded frames are “dirty”, that is,
many blocks containing other information than they should.
Therefore, a metric able to quantify the dirtiness would be
useful.

The degradation that affects the video frames is in fact
a mixture of several impairments, including blockiness and
the sudden occurrence of new colours. The modifications of
the image content reflect both in the colour histograms—a
larger spread of the histogram due to the presence of new
colours—and the spectral representation of the luminance
and chrominance (high frequencies due to blockiness). Given
all the above considerations, we believe that metrics like blur,
contrast, brightness, and even blockiness lose their meaning,
and they are not able to reflect the degradation; therefore,
they cannot be applied for such degraded video frames.
Metrics able to capture all the aspects of the degradation
that reflect the colour spread—the amount of new colours
occurring in the degraded video frames would be more
appropriate. We, therefore, consider that the approaches
based on multiscale analysis and image complexity are more
adapted to the video-quality assessment. Fractal analysis-
based approaches offer the possibility to synthesize into
just one measure adapted to the human visual system,
all the relevant features for the quality of an image (e.g.,
colourfulness and sharpness) instead of analyzing all image
characteristics independently and then to find a way to
combine the intermediate results. Due to its multiscale
nature, the fractal analysis is in accordance with the spirit
of all multiresolution wavelet-based approaches mentioned
before, which unfortunately work only for gray-scale images.
Therefore, one of the advantages of our approach would be
the fact that it also takes into account the colour information.
In addition, the fractal measures are invariant to any linear
transformation like translation and rotation.

Our choice is also justified by the way that humans per-
ceive the fractal complexity. In a study on human perception
conducted on fractal pictures [33], the authors conclude that
“the hypothesis on the applicability and fulfillment of Weber-
Fechner law for the perception of time, complexity and
subjective attractiveness was confirmed”. Their tests aimed
at correlating the human perception of time, complexity,
and aesthetic attractiveness with the fractal dimension and
the Lyapunov exponent, based on the hypothesis that the
perception of fractal objects may reveal insights of the
human perceptual process. In [34], the most attractive
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(a) Original video frame, CFD = 3.14 (b) Degraded video frame, CFD = 3.31 (c) Absolute difference, CFD = 3.072

Figure 1: One original video frame from the “football” video sequence (a), the corresponding degraded received video frame (b), and the
absolute difference (c).

fractals appeared to be the ones with the fractal dimension
comprised between 1.1 and 1.5. According to [35], “the
prevalence of fractals in our natural environment has
motivated a number of studies to investigate the relationship
between a pattern’s fractal character and its visual properties”,
for example, [36, 37]. The authors of [35] investigate the
visual appeal as a function of the fractal dimension, and
they establish three intervals: [1.1–1.2] low preference, [1.3–
1.5] high preference, and [1.6–1.9] low preference. Pentland
finds in this psychophysical studies [38, 39] that for the
one-dimensional fractional Brownian motion and the two-
dimensional Brodatz textures, the correlation between the
fractal dimension and the perceived roughness is more than
0.9.

Last but not least, the very essence of the word “complex”
of Latin-etymology—meaning “twisted together”, designat-
ing a system composed of closely connected components—
emphasizes the presence of multiple components that inter-
act with each other, generating an emergent property [40].

2. Fractal Analysis

The fractal geometry introduced by Mandelbrot in 1983
to describe self-similar sets called fractals [41] is generally
used to characterize natural objects that are impossible to
describe by using the classical (Euclidian) geometry. The
fractal dimension and lacunarity are the two most-known
and widely used fractal analysis tools. The fractal dimension
characterizes the complexity of a fractal set, by indicating
how much space is filled, while the lacunarity is a mass
distribution function indicating how the space is occupied
[42]. These two fractal properties are successfully used to dis-
criminate between different structures exhibiting a fractal-
like appearance [43–45], for classification and segmentation,
due to their invariance to scale, rotation, or translation. The
fractal geometry proved to be of a great interest for the digital
image processing and analysis in an extremely wide area of
applications, like finance [46], medicine [44, 47, 48], and art
[49].

There exist several different mathematical expressions
for the fractal dimension, but the box-counting is the
most popular due to the simplest algorithmic formulation,
compared to the original Hausdorff definition expressed for
continuous functions [50]. The box-counting definition of
the fractal dimension is Dbox = − logN(δ)/ log δ, where

N(δ) is the number of boxes of size δ needed to completely
cover the fractal set. The first practical approach belongs to
Mandelbrot, but that was followed by the elegant probability
measure of Voss [51, 52]. On a parallel research path, Allain
and Cloitre [53] and Plotnick et al. [54] developed their
approach as a version of the basic box-counting algorithm.
All the other approaches for the computation of the fractal
dimension, like δ-parallel body method [55] (a.k.a. covering-
blanket approach, Minkowsky sausage, or morphological
covers) or fuzzy [56] are more complex from a point of
view of implementation and more difficult to extend to a
multidimensional colour space. However, we proposed in
[57] a colour extension of the covering blanket approach
based on a probabilistic morphology. On the other hand,
despite the large number of algorithmic approaches for the
computation of the fractal dimension and lacunarity, only
few of them offer the theoretical background that links them
to the Hausdorff dimension.

However, such tools were developed long time ago
for grey-scale small-size images, but due to the evolution
of the acquisition techniques the spatial resolution signif-
icantly increased and, in addition, the world of images
became coloured. The very few existing approaches for
the computation of fractal measures for colour images are
restricted to a marginal colour analysis, or they transform
a gray-scale problem in false colour [48]. In the following
section, we briefly present our colour extension of the
existing probabilistic algorithm by Voss [51], fully described
in [58], which were validated on synthetic colour fractal
images [59] and used to characterize the colour textures
representing psoriatic lesions, in the context of a medical
application in dermatology [60]. Then, we show how the
colour fractal dimension and lacunarity can be used to
characterize the degradation of the video signal for a video
streaming application. Without loss of generality, we present
the results we obtain in the case of an MPEG-4 video-
streaming application.

3. Colour Fractal Dimension and Lacunarity

The existing approaches for the estimation of the fractal
dimension, especially the box-counting-like approaches,
consider the gray-scale image a set of points S in an Euclidian
space of dimension E. In the probabilistic algorithm defined
by Voss [51] upon the proposal from Mandelbrot [41],
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the spatial arrangement of the set is characterized by the
probability matrix P(m, δ), the probability of having m
points inside a cube of size δ (called box), centered in an
arbitrary point of the set S. In other words, P(m, δ) is the
probability that the signal “visited” the box of size δ. The
matrix is normalized so that

∑N
m=1 P(m, δ) = 1, for all δ ∈

R+, where N is the maximum number of pixels that are
included in a box of size δ. Given the total number of points
in the image is M, the number of boxes that contain m points
is (M/m)P(m, δ). Thus, the total number of boxes needed to
cover the image is

〈N(δ)〉 =
N∑

m=1

M

m
P(m, δ) =M

N∑
m=1

1
m
P(m, δ). (1)

Consequently N(δ) = ∑N
m=1(1/m)P(m, δ) is propor-

tional to δ−D, where D is the fractal dimension to be
estimated.

If a gray-scale image is considered to be a discrete surface
z = f (x, y), where z is the luminance in every (x, y)
point of the space, then a colour image is a hyper-surface
in a 3-dimensional colour space. Thus, we deal with a 5-
dimensional hyper-space where each pixel is a 5-dimensional
vector. We use RGB for the representation of colours due to
its cubical organization, even though it is not a Euclidian
uniform space. The classical algorithm of Voss uses boxes of
variable size δ centered in the each pixel of the image and
counts how many pixels fall inside that box. We generalize
this by counting the pixels for which the Minkowski infinity
norm distance to the center of the hyper-cube is smaller
than δ. Practically, for a certain square of size δ in the (x, y)
plane, we count the number of pixels that fall inside a 3-
dimensional RGB (r ± δ/2, g ± δ/2, b ± δ/2, ) cube of size
δ, centered in the current pixel (r, g, b)—the colour of the
current pixel. The theoretical development and validation on
synthetic colour fractal images can be found in [58].

Even from the very beginning, when Mandelbrot intro-
duced the fractal geometry, he was aware of the fact that the
fractal dimension itself is not sufficient to fully capture the
complexity of nondeterministic objects; therefore, he defined
the lacunarity Λ as a complementary metric. Later on, Voss
expressed it based on the probabilities P(m, δ) and using the
first and second order moments of the measure distribution
(2). Following the previous considerations, the lacunarity
can be therefore defined and computed for colour images
as well. See also [61] for a complete view of the definition
and the interpretation of lacunarity for synthetic and natural
colour fractal images

Λ(δ) = M2(δ)− (M(δ))2

(M(δ))2 , (2)

where

M(δ) =
N∑

m=1

mP(m, δ),

M2(δ) =
N∑

m=1

m2P(m, δ).

(3)

The lacunarity characterizes the topological organisation
of a fractal object, an image in our particular case, being
a scale-dependent measure of spatial heterogeneity. Images
with small lacunarity are more homogeneous with respect
to the size distribution and spatial arrangement of gaps.
On the other hand, images with larger lacunarity are more
heterogeneous. In addition, lacunarity must be taken into
consideration after inspecting the fractal dimension: in a
similar manner with the Hue-saturation couple in colour
image analysis, the lacunarity becomes of greater importance
when complexity, that is, the fractal dimension, increases.

4. Approach Argumentation and Validation

In Figure 1, we present two video frames: one from the
original video sequence and the corresponding degraded
video frames from the sequence at the receiver, along with the
pseudoimage representing the absolute difference between
the former two. The computed colour fractal dimensions
are 3.14, 3.31, and 3.072, respectively. One can see that the
larger fractal dimension reflects the increased complexity of
the degraded video frame. The increased complexity comes
from the blockiness effect, as well as from the dirtiness and
the augmented colour content (see also the 3D histograms in
Figure 3).

The corresponding lacunarity curves are depicted in
Figure 2. One can see that the curve for Figure 1(b) is placed
highly above the curve for the Figure 1(a) indicating a more
lacunar and heterogeneous image. Surprisingly enough, the
difference Figure 1(c) has a very similar lacunarity to the
one of the original image, but the difference pseudoimage
is more lacunar than the original for small values of δ:
δ ≤ 10—indicating that the degradation mainly takes place
in blocks of 8 × 8 pixels—while for larger values of δ it is
less lacunar—more uniform, clearly seen, and justified by
the smaller variations of colours. The complexity revealed
by the lacunarity curves is in accordance with the fractal
dimension: the original unaffected video frame being a less
lacunar image than the degraded one.

Because the lacunarity is a measure of how the space is
occupied, we present in Figure 3 the 3D histograms in the
RGB colour space, as a visual justification. One can see that
the histogram of the degraded video frame is more spread
than the one of the original video frame, indicating a more
rich image from the point of view of its colour content.

For the quantification of the spread of the 3D histograms,
we computed the co-occurrence matrices for the three
images in Figure 1. This choice is justified by the fact
that in the case of a random fractal the fractal dimension
is proportional to the variance of the increments [51].
Therefore, we computed the co-occurrence matrices for
a neighborhood distance of one pixel, on the horizontal
direction. In this way, the computed co-occurrence is a
measure of the correlation between pixels. In Figure 4, for
the two video frames we show the three overlayed co-
occurrence matrices, one for each RGB component. The
results indicate that the variance of the values is larger for
the degraded video frames, indicating a smaller correlation
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Figure 2: Lacunarity curves for the images in Figure 1 (also for
images 10.1, 10.2, and 10.3 in Figure 10, resp.).

between the neighbour pixels. The lack of correlation is the
natural consequence of the sum of impairments that affect
the degraded frame. As shown in [59], that the co-ocurrence
matrix shape is linked to the fractal dimension of the signal
or image. These two points of view—the 3D histograms and
the co-occurrence matrices—are a first validity proof and
justification for a fractal approach.

For an even further investigation and argumentation, we
analyze the video frames from the point of view of their
spectral fluctuations. Random function or signal complexity
can be defined based on its power-density spectrum: for a
random fractal signal v(t), the power-density function varies
upon a power law in 1/ f β. So, the Fourier transform V( f ,T)
computed on T time samples of v(t) allows to express the
spectral density function SV ( f ) as

SV
(
f
)∝ T

∣∣V( f ,T
)∣∣2 as T −→ ∞. (4)

The link between the power law of β and the fractal
dimension D is defined by the relation (5) from [51], where
E is the dimension of the Euclidian space representing the
topological dimension of the signal (e.g., E = 1 for a one-
dimensional signal and E = 2 for an image) and H is the
Hurst factor, which indicates the complexity of the fractal
object. H is comprised between 0 and 1 and intimately
connected to the fractal dimension. A value of H close to
0 indicates a very complex object, while a value close to 1
indicates a “simpler” object, that is, a smoother signal

D = E + 1−H = E +
3− β

2
. (5)

Given that it is almost impossible to estimate the impact
of the artifacts in the spatial domain, without any reference
(original video signal), in the frequence domain is clearly
enough that the artifacts induce very high frequencies and

a specific modification of the spectrum which could be close
to a complexity induced by a fractal model.

In Figure 5, we show the 2D FFT of the two video
frames, for each colour plane, and in Figures 6, 7, and 8 the
horizontal and vertical slices of the spectra, corresponding
to the spatial frequencies v = 0 and u = 0, respectively.
One can clearly note that the marginal analysis (plane by
plane) is not able to reflect the entire colour degradation
that affects the video signal, but the degradation induces a
complexity fluctuation that is, well captured by the fractal
dimension. So, it is yet another proof that justifies the use of
a colour estimation of degradation by means of colour fractal
geometry.

The order of complexity of our approach, for an image of
size N2 is O(N2M), where M represents the results of the sum
32 +52 +72 +· · ·+m2

max, mmax being the maximum hypercube
size—41 in our case. Given that the sum of the squares of the
first n odd natural numbers is

12 + 32 + 52 + · · · + (2n− 1)2 = n(2n− 1)(2n + 1)
3

, (6)

then

M = n(2n− 1)(2n + 1)
3

− 1, (7)

where n = mmax/2.
In addition, due to the complexity of the colour Fourier

transform based on Quaternionic approaches, our approach
is the more suitable at this moment for a real-time imple-
mentation. For an image of size N2, the complexity of a
parallel implementation of our approach would be O(N2),
while for a 2D Fast Fourier Transform the best case is of
O(N2 logN) complexity.

In Figure 9(a), we depict the block diagram that illus-
trates the use of the colour fractal dimension and lacunarity
as video-quality metrics in a reduced reference scenario. At
the source, the two fractal measures are computed for each
video frame and sent along with the coded video frames over
the network. At destination, the same fractal measures are
computed for the received video frames and compared with
the references.

5. Experimental Results

From the plethora of IP-based video application, we chose
an MPEG-4 streaming application. Streaming applications
usually use RTP (Real-Time Protocol) over UDP; therefore,
the traffic generated by such an application is inelastic and
doesnot adapt to the network conditions. In addition, neither
UDP itself or the video streaming application implement a
retransmission mechanism. Therefore, the video streaming
applications are very sensitive to packet loss: any lost packet
in the network will cause missing bits of information in the
MPEG video stream.

Given that packet loss is the major issue for an MPEG-4
video streaming application, in our experiments the induced
packet loss percentage varied from 0% to 1.3%. Above this
threshold, the application cannot longer function (i.e., the
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(a) Original video frame (b) Degraded video frame (c) Absolute difference

Figure 3: The 3D histograms for the two-video frames.

(a) Original video frame (b) Degraded video frame (c) Absolute difference

Figure 4: The overlayed co-occurrence matrices.

connection established between the client and the server
breaks), and tests cannot be performed. The test setup is
depicted in Figure 9(b): the MPEG-4 streaming server we
used was the Helix streaming server from Real Networks
(http://www.realnetworks.com/) and the MPEG-4 client was
mpeg4ip (http://mpeg4ip.sourceforge.net/). We modified
the source code of the client to record the received video
sequence as individual frames in bitmap format. We ran
the tests using three widely used video sequences: “football”,
“female”, and “train”, MPEG-4 coded. The video sequences
were 10 seconds long, with 250 frames, each of 320×240 size.
The average transmission rate was approximately 1 Mb/s,
which was a constrained from using a trial version of the
MPEG-4 video streaming server—however it represents a
realistic scenario.

The monitoring system we designed and implemented
uses two Fast Ethernet network taps to “sniff” the application
traffic on the links between two Linux PCs that run the
video streaming server and client. The traffic is further
recorded as packet descriptors by the four programmable
Alteon UTP (Unshielded Twisted Pair) and NICs (Network
Interface Card), two for each tap, in order to mirror the
full-duplex traffic. From each packet, all the information
required for the computation of the network quality of
service (QoS) parameters is extracted and stored in the local
memory as packet descriptors. The host PCs, that control the

programmable NICs, periodically collect this information
and store it in descriptor files. These traffic traces are ana-
lyzed in order to accurately quantify the quality degradation
induced by the network emulator: one-way delay, jitter, and
packet loss, as instantaneous or average values, as well as
histograms. In parallel, the video signal is recorded for the
offline processing. Since the two measurements described
above are correlated from the point of view of time, the
effects of the measured network degradation on the quality
of the video signal can be estimated by the module denoted
user-perceived quality (UPQ) meter. More results and details
about the experimental setup are to be found in [62–64].

In Figure 10, one may see three type of degradation
that occurs in our tests: important or severe degradation
(top); less-affected frames (middle) and special or green
degraded frames (bottom). The difference ΔCFD between
the colour fractal dimension of the degraded and the original
corresponding video frame will be considerable for the first
two images that exhibit an important degradation—that is,
almost the entire image is affected by severe blockiness, and
the scene cannot be understood. ΔCFD will be small, but
still positive for less affected images (the football players
may no longer be identifiable, but the rest of the scene
is unchanged). For the “green” images the colour fractal
dimension is smaller than the one of the corresponding
original frames, therefore, the ΔCFD will be negative.
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Figure 5: 2D FFT of the two video frames, per plane.
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Figure 6: T(u) (top) and T(v) (bottom) for the red plane, for the original (left) and degraded (right) video frames.
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Figure 7: T(u) (top) and T(v) (bottom) for the green plane, for the original (left) and degraded (right) video frames.

The corresponding lacunarity curves are depicted in
Figure 11—the blue curve for the original video frame, the
red curve for the degraded video frame, and the black one for
the absolute difference pseudoimage. The largest lacunarity
is for the most affected video frames, as expected. From a
human perception point of view, the colour lacunarity curves
are able to reveal the correct ranking, as well as the colour
fractal dimension.

In order to analyse the degradation in time, in Figure 12
the evolution of the colour fractal dimension in time is
depicted. One can see that the original “football” sequence
is characterized by a large variation in the complexity of the
image, due to the fact that the scene changes and also due to
the high dynamicity. Therefore, the variation of the colour
fractal dimension due to degradation is almost insignificant.
In addition, due to the lost video frames, the two curves will
get more and more desynchronized in time, which makes
the analysis more difficult. However, it is possible to create a
reference-based metric by using the colour fractal dimension

(note the grey zones that indicate a slight increase of the
fractal dimension due to quality degradation).

One can note that for the original “football” video
sequence the colour lacunarity has also an important
variation (see Figure 13) from frame to frame, but its values
are comprised between 0 and 1.5. For the degraded video
sequence (b), we can see that the lacunarity skyrockets up
to 3.0 for the interval of video frames affected by important
degradation (the first interval market with grey). The less
important degradation (the next greyed intervals) can only
be detected if we take as reference the lacunarity of the orig-
inal video sequence. In order to implement a no-reference
metric, lacunarity ≥ 1.5 can indicate the severe degradation.

We analyzed two more video sequences: “female” and
“train” (Figure 14). The corresponding colour fractal dimen-
sion as a function of time are depicted in Figure 15. The
lacunarity curves are presented in Figure 16.

For the “female” and the “train” video sequences, one
may note another interesting characteristic of the lacunarity
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Figure 8: T(u) (top) and T(v) (bottom) for the blue plane, for the original (left) and degraded (right) video frames.

curves, which exhibit a certain periodicity in time (see
Figure 17). The explanation is the fact that from time to time
the video signal is affected by a not-so-severe blockiness due
to the encoding mechanisms only. This is not visible on the
“train” video sequence, due to the high-complexity content
of the image scene, but it can be easily seen on the “female”
video sequence—an example is depicted in Figure 14(b).

6. Comparison

In this section, we present a comparison with some
of the metrics mentioned in the introduction: SNR,
PSNR, MSE, SSIM, and VSNR. For the computation
of the SSIM we used the Matlab code (http://www.ece
.uwaterloo.ca/∼z70wang/research/ssim/) provided by the
author of the metric proposed in [23] and for VSNR the
Matlab implementation available (http://foulard.ece.cornell
.edu/dmc27/vsnr/vsnr.html) provided by the authors of [27].
For colour images, the MSE (8), SNR (9), and PSNR (10)

metrics are often computed independently for the red, green,
and blue (RGB) colour channels and averaged together in
order to compute the final distortion. We chose to compute
these classical signal fidelity measures in the RGB colour
space, despite of the very well-known fact that the RGB
space is not perceptually uniform—to be consistent with
the definition of the colour fractal approach, which was
developed based on the RGB colour space. We are aware
of the fact that metrics like SNR and MSE could perform
better in a perceptual colour space (e.g., CIELAB) and in
addition we envisage a further development of the colour
fractal approach in Lab and HSV

MSE = 1
MN

M∑
i=1

N∑
j=1

[
o
(
i, j
)− d

(
i, j
)]2, (8)

SNR = 10 log10

⎡
⎣ (1/MN)

∑M
i=1

∑N
j=1 o

(
i, j
)2

MSE

⎤
⎦, (9)
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Figure 9: The block diagram and the test setup.

where o(i, j) is the original image, d(i, j) is the degraded
image, both of them of size M ×N

PSNR = 10 log10

[
I2

max

MSE

]
, (10)

where Imax is the maximum intensity level, that is, 255 for an
image.

In Table 1, we show the results we obtain for the images
in Figure 10, when we compute the difference between the
colour fractal dimension of the degraded video frame and the
colour fractal dimension of the original video frame, along
with the various metrics mentioned above. The values of
ΔCFD are very well correlated to SNR, PSNR, and MSE, and
well correlated to VSNR, but they are not at all correlated

to SSIM. However, for the minimum visible degradation—
images 10.13 and 10.14 for which ΔCFD = 0.178 is
small—the SSIM indicates the largest similarity, as well as
PSNR, and VSNR has also a large value. For the largest
visible degradation—images 10.21, 10.22, 10.25, and 10.26—
the VSNR well captures it, while SSIM does not reach its
minimum values.

We plan to perform a further comparison between the
metrics on larger databases of test images. In addition,
we have to mention the fact that the SSIM and VSNR
were mainly used to assess the quality degradation induced
by the image compression algorithms, case in which the
image degradation is not as violent as in our experiments.
Therefore the right way to compare our method against all
the existing approaches is not straightforward and, definitely,
not amongst the goals of the current paper.
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(10.1) CFD = 3.14 (10.2) CFD = 3.31 (10.3) CFD = 3.072 (10.4) SSIM map

(10.5) CFD = 3.038 (10.6) CFD = 3.357 (10.7) CFD = 3.125 (10.8) SSIM map

(10.9) CFD = 2.995 (10.10) CFD = 3.373 (10.11) CFD = 3.019 (10.12) SSIM map

(10.13) CFD = 2.804 (10.14) CFD = 2.983 (10.15) CFD = 2.689 (10.16) SSIM map

(10.17) CFD = 2.975 (10.18) CFD = 3.179 (10.19) CFD = 2.933 (10.20) SSIM map

(10.21) CFD = 3.216 (10.22) CFD = 2.284 (10.23) CFD = 2.973 (10.24) SSIM map

(10.25) CFD = 3.158 (10.26) CFD = 2.464 (10.27) CFD = 2.734 (10.28) SSIM map

Figure 10: Original video frames (1st column) from the “football” sequence, degraded frames exhibiting different levels of degradation (2nd
column), absolute differences (3rd column), and the SSIM map [23] (4th column).

In addition, in Table 2 we show a comparison of our
approach against the SNR, PSNR, MSE, SSIM, and VSNR
from the point of view of the required algorithmical
complexity. We are assuming an image of size N2.

The constant c for the complexity of SSIM approach is
given by the size of the window for computing the local mean

and variance—8 × 8—and the 11 × 11 circular-symmetric
Gaussian weighting function that is, used when computing
the map of local SSIM values. The maximum complexity
bounds in case of VSNR is clearly given by the complexity
of the discrete wavelet transform (DWT) that is, used. It is
known that an efficient implementation of DWT is in O(N2).
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Figure 11: Corresponding colour lacunarity curves for the images in Figure 10.
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Table 1: Comparison between the ΔCFD and SNR, PSNR, MSE, SSIM, and VSNR.

Images ΔCFD SNR [dB] PSNR [dB] MSE SSIM VSNR

10.1, 10.2 0.17 −11.9025 12.3316 0.0585 0.3907 2.1754

10.5, 10.6 0.319 −11.1911 13.0221 0.0499 0.226 1.4855

10.9, 10.10 0.378 −5.3733 18.8619 0.0130 0.5199 −1.5415

10.13, 10.14 0.178 −4.4426 19.7353 0.0106 0.6199 5.7999

10.17, 10.18 0.205 −9.8929 14.3382 0.0368 0.2868 3.8740

10.21, 10.22 −0.932 −20.0039 4.2135 0.3790 0.4158 6.4629

10.25, 10.26 −0.694 −18.9250 5.2437 0.2990 0.3717 6.2717

Table 2: Complexity of approaches.

Approach CFD SNR PSNR MSE SSIM VSNR

Complexity O(N2M) O(N2) O(N2) O(N2) O(cN2) O(N2)

0 50 100 150 200 250
2

2.5

3

3.5

Figure 12: The colour fractal dimension as a function of time, blue-
original, red-received, for the “football” video sequence.

The following relationship is evident: c < M; however, the
complexity of a parallel implementation of our approach
would be in O(N2).

7. Subjective Tests

The original hypothesis was that the quality perceived is
directly proportional to the fractal complexity of an image. In
order to validate from a subjective point of view the approach
we proposed for the assessment of the video quality, we
performed several subjective tests, on different video frames
from video sequences—sport videos of football matches, in
particular. The aim of the experiments was to prove that the
complexity of colour fractal images is in accordance with
the human perception; therefore, the colour fractal analysis-
based tools are appropriate for the development of video
quality metrics.

We ran our experiments on a set of 27 individuals,
guided by the general recommendations from [7]. In the
experiment, we used video frames—original and degraded—
from the standard test “football” video sequence. Pairs of
images were presented, thus the experiments were reference-
based. After presenting the minimum and the maximum
degradation that may affect the video frames, the individuals
were asked to grade the perceived degradation with a score
comprised between 0 and 5, according to the levels of
degradation presented in Table 3, in accordance with the
quality levels specified by the ITU.

Table 3: Levels of perceived image degradation.

0 No degradation at all

1 imperceptible

2 perceptible, but not annoying

3 slightly annoying

4 annoying

5 very annoying

For the images in Figure 10, the mean opinion score
and the standard deviation, σMOS, computed based on the
27 responses are presented in Table 4, as well as the colour
fractal dimension (CFD) and its variation, ΔCFD.

If we exclude the images 10.22 and 10.26, for which
the estimated colour fractal dimension variation is negative
because of the important degradation and lack of infor-
mation, the correlation coefficient between the MOS and
ΔCFD is 0.8523. Despite of the fact that these results must
be extended to a bigger image set, the approach creates a new
perspective on the perception of colour image complexity. If
we take into account the two images, 10.22 and 10.26, the
correlation between mean score and estimated colour fractal
complexity is 0.4857. This result, induced by the negative
value for the colour fractal complexity variation, may lead
to new developments for colour fractal measures. Clearly
enough, the perceived complexity of those images is lower
than the one of the others.

We conclude that the fractal dimension reflects the
perceived visual complexity of the degraded images, as long
as the degradation is not extreme and ΔCFD is not negative.
We plan to run more subjective experiments in order to
augment the pertinence of the results from a statistical point
of view and to propose a better colour fractal estimator to
deal with this minor numerical inconsistency.

8. Conclusions

We conclude that the colour lacunarity itself can be used as
a no-reference metric to detect the important degradation of
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Figure 13: The colour lacunarity curves versus time for the “football” sequence.

(a) Frame 23 (b) Frame 24 (c) Frame 42 (d) Frame 185

(e) Frame 0 (f) Frame 77 (g) Frame 105 (h) Frame 192

Figure 14: Frames from “female” (top row) and “train” (bottom row) video sequence.
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Figure 15: The colour fractal dimension as a function of time (blue-original, red-received/degraded) for the “female” and “train” video seq.

Table 4: The MOS and standard deviation.

Image (10.2) (10.6) (10.10) (10.14) (10.18) (10.22) (10.26)

MOS 4.6296 4.2963 4.1852 2.2222 2.1111 5.0000 3.4444

σMOS 0.4921 0.6688 0.6815 0.6980 0.8006 0 0.8006

ΔCFD 0.17 0.319 0.378 0.178 0.205 −0.932 −0.694

CFD 3.31 3.357 3.373 2.983 3.179 2.284 2.464
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(b) Original “train” video
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(c) Degraded “female” video
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(d) Degraded “train” video

Figure 16: The colour lacunarity curves versus time for “female” and “train”.
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Figure 17: Periodicity of the lacunarity in time for the “female” (a) and “train” (b) video sequences.

the video signal at the receiver. The colour fractal dimension
and lacunarity can be definitely used as a reference-based
metrics, but this is usually impossible in a real environment
setup when the original signal is not available at the receiver.
The colour fractal dimension is not enough to be used as a
stand-alone metric but in a reduced-reference scenario, the
fractal features we propose—the colour fractal dimension
and the colour lacunarity—can be used to objectively assess

any degradation of the received video signal and, given that
they are correlated to the human perception, they can be used
for the development of quality of experience metrics. An
important aspect, which represents an invaluable advantage,
is the robustness of the fractal measures to any modification
of the video signal during the broadcast, like translation,
rotation, mirroring or even cropping (e.g., when the image
format is changed from 6 : 9 to 3 : 4).
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For the computation of the two metrics we propose
a colour extension of the classical probabilistic algorithm
designed by Voss. We show that our approach is able to
capture the relative complexity of the video frames and the
sum of aspects that characterize the degradation of an image,
thus the colour fractal dimension and lacunarity can be
used to characterize and objectively assess the degradation of
the video signal. To support our approach and conclusions,
we also investigated the 3D histograms, the co-occurrence
matrices and the power density functions of the original and
degraded video frames. In addition, we present the results of
our subjective tests. Given that the fractal features are well
correlated to the perceived complexity by the human visual
system, they are of great interest as objective metrics in a
video quality analysis tool set.

Our choice of using the RGB colour space perfectly suits
the probabilistic approach, and the extension from cubes
to hypercubes was natural and intuitive. We are aware of
the fact that the RGB colour space may not be the best
choice when designing an image analysis algorithm from the
point of view of the human visual system and given that
a perceptual objective metric is desired, we plan to further
develop our colour fractal metrics by using other colour
spaces, for example, Lab or HSL, capable of better capturing
and reflecting the human perception of colours, but with a
higher computational cost.
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